

QwikFoot and QwikFix Threaded Inserts Design Guide

December 2020

We are one team. We are Leviat.

Leviat is the new name of CRH's construction accessories companies worldwide.

Under the Leviat brand, we are uniting the expertise, skills and resources of Ancon and its sister companies to create a world leader in fixing, connecting and anchoring technology.

The products you know and trust will remain an integral part of Leviat's comprehensive brand and product portfolio. As Leviat, we can offer you an extended range of specialist products and services, greater technical expertise, a larger and more agile supply chain and better, faster innovation.

By bringing together CRH's construction accessories family as one global organisation, we are better equipped to meet the needs of our customers, and the demands of construction projects, of any scale, anywhere in the world.

This is an exciting change. Join us on our journey.

Read more about Leviat at Leviat.com

Our product brands include:

HELIFIX GISEDIO PLAKA

H HALFEN

Imagine. Model. Make.

Leviat.com

Ancon QwikFoot and QwikFix Cast-in Inserts (ferrules)

Leviat provides a wide range of Threaded Inserts to be used in precast panels. QwikFoot threaded inserts provide a safe load transfer through a forged head and thus do not require a crossbar to transfer loads. QwikFix inserts are made from solid steel and have a cross hole. The anchorage is provided by a crossbar being fed through this hole. Ferrules are available with metric threads from M10 to M24 and Unicoil threads UC16. The inserts are available in zinc plated or hot-dip galvanized G350 steel and stainless steel grade 316. We provide nailing plates to safely attach the inserts to the formwork and avoid ingress of concrete. Precast Chairs are available to simplify the installation and keep the inserts in place while casting.

Contents

QwikFoot Threaded Inserts	5
Short QwikFoot Threaded Inserts	6
QwikFix Threaded Inserts	7
Manufacture & Materials	8
Installation	9-11
Structural Fixing Design	12-17
QwikFoot Design for	
Structural Fixings	18-25

QwikFix Round Insert Design	
for Structural Fixings	26-28
Working Load Limit - Design of	
Brace & Strongback Inserts	29-32
Additional Design Requirements for	
Earthquake Effects	33

Applications

Cast-in, threaded inserts are used for two distinct applications in precast concrete elements:

The attachment of permanent structural fixtures

Metric threaded inserts with M12, M16 and M20 threads are used in combination with Grade 4.6 or 8.8 bolts. For this application the capacities are calculated from the characteristic strength of insert and bolt using capacity reduction factors in accordance with NZS 3101 and NZS 3404 i.e. the design capacity $R_d = fR_u$

The attachment of temporary braces and strongbacks

For the erection of precast concrete elements using M20 Grade 4.6 bolts or Unicoil bolts. These applications are designed using the Working Load Limit (WLL) method in accordance with Good Practice Guidelines - Safe work with precast concrete:2018 (GPG2018) where the WLL is determined from the characteristic strength of the insert and bolt using a Factor of Safety (FoS) not less than 2.5 i.e. WLL = $R_u / 2.5$

QwikFoot Threaded Inserts

QwikFoot inserts are heavy duty, hot forged inserts with a large foot for high strength anchorage to concrete.

- Applicable for all structural connections using Grade 4.6 and 8.8 metric bolts
- Available with Unicoil threads for fast connection of braces and strongbacks
- Cross-holed to fit a bar for positive tie-in to reinforcing to prevent movement during concrete pouring and vibration (not to increase the capacity of the insert)
- Easily installed with the click-in QwikFoot Precast Chair, nailing plate or antenna cap according to requirements
- The large diameter foot develops full anchorage capacity without requiring a crossbar
- Develops full strength for 'Puddle-in' applications

QwikFoot Dimensions and Part Codes

Internal Thread Size	Length L mm	Body Diameter d mm	Eff. Embement Depth * h _{ef} mm	Thread Depth T _d mm	Crosshole Diameter C _d mm	Crossbar for Tying mm	Foot Diameter F _d mm	Part Code Zinc Plated	Part Code Galvanised	Part Code T316 Stainless
M10	50	16	55	25	11	R10	35	FF1050G	FF1050G	FF1050S316
M12	50	20	55	25	11	R10	35	FF1250Z	FF1250G	FF1250S316
M12	70	20	75	30	11	R10	50	FF1270Z	FF1270G	FF1270S316
M12	96	20	101	30	11	R10	50	FF1296Z	FF1296G	FF1296S316
M16	70	25	75	35	11	R10	50	FF1670Z	FF1670G	FF1670S316
M16	96	28	101	35	15	H12	50	FF1696ZH	-	-
M16	96	25	101	40	11	R10	50	-	FF1696G	FF1696S316
M20	70	28	75	30	15	H12	50	FF2070ZH	FF2070G	FF2070S316
M20	96	28	101	50	15	H12	50	FF2096ZH	FF2096G	FF2096S316
M20	120	28	125	50	15	H12	50	FF20120ZH	FF20120G	-
M24	96	36	101	45	15	H12	50	FF2496Z	-	FF2496S316
M24	96	40	101	45	20	H12/H16	50	-	FF2496G	-
QwikFoot Unicoil Bracing Insert										
UC16	96	28	101	50	15	H12	50	UCQF1696Z	-	-

* Includes 8mm for the nailing plate

Short QwikFoot Threaded Inserts

Short QwikFoot inserts are heavy duty, hot forged inserts with a large hex foot for high strength anchorage to concrete.

- Applicable for all structural connections using Grade 4.6 and 8.8 metric bolts
- Easily installed with nailing plate or antenna cap according to requirements. Short QwikFoots do not match with QwikFoot Precast Chair.
- The large hex foot develops full anchorage capacity without requiring a crossbar
- Develops full strength for 'Puddle-in' applications

Short QwikFoot Dimensions and Part Codes

Internal Thread Size	Length L mm	Body Diameter d mm	Eff. Embedment Depth * h _{ef} mm	Thread Depth T _d mm	Max. Foot Width G mm	Min. Foot Width F mm	Hex Side Length s mm	Part Code Galvanised	Part Code T316 Stainless
M12	45	28	50	42	50	43.3	25	FF1245G	FF1245S316
M16	45	28	50	42	50	43.3	25	FF1645G	FF1645S316
M20	45	28	50	42	50	43.3	25	FF2045G	FF2045S316

* Includes 8mm for the nailing plate

QwikFix Threaded Inserts

QwikFix inserts are medium duty, round bodied inserts, machined and cross-holed from solid G350 steel.

- Popular for medium duty Grade 4.6 metric bolt connections
- Available with Unicoil threads for quick connection of braces and strongbacks
- Cross-holed to fit an H12 bar. This bar should be minimum 300mm long for effective concrete anchorage
- · May be installed with a Super Chair, nailing plate or antenna cap according to requirements
- Tension capacity limited by the shear resistance of the inserted H12 crossbar

Double ended ferrule

QwikFix Dimensions and Part Codes

Internal Thread M Size	Length L mm	Body Diameter d mm	Eff. Embedment Depth * h _{ef} mm	Thread Depth T _d mm	Crosshole Diameter C _d mm	Crossbar for Tying mm	Part Code Zinc Plated	Part Code Galvanised
M12	96	28	89	25	15	H12	FER1296Z	FER1296G
M16	76	28	69	35	15	H12	FER1676Z	-
M16	96	28	89	35	15	H12	FER1696Z	-
M16	96	28	89	55	15	H12	-	FER1696G
M20	76	28	69	35	15	H12	FER2076Z	-
M20	96	28	89	40	15	H12	FER2096Z	-
M20	96	28	89	55	15	H12	-	FER2096G

Unicoil thread Bracing Insert

UC16 96 28 89 50 15 H12 FERB3496Z -

* Includes 8mm for the nailing plate

QwikFix Double Ended Inserts Dimensions and Part Codes

M16	140	28	70	40	15	H12	FERD16140Z	-
M16	170	28	85	40	15	H12	FERD16170Z	-
M16	190	28	95	40	15	H12	FERD16190Z	-
M20	140	28	70	40	15	H12	FERD20140Z	-
M20	165	28	82	40	15	H12	FERD20165Z	-
M20	170	28	85	40	15	H12	FERD20170Z	-
M20	190	28	95	40	15	H12	FERD20190Z	-

Design of QwikFix Double Ended Inserts:

For the design loads and Working Load Limits of Double Ended Inserts please refer to the steel capacities and the concrete capacities for QwikFix Threaded Inserts with similar thread and similar h_{ef}, (for FERD16140Z refer to FER1676Z, for FERD20190Z refer to FER2096Z).

Manufacture and Materials

Unicon threaded inserts are manufactured from G350 structural steel or T316 A4 stainless steel. These are ductile steels, ideal for tension, shear and moment carrying structural connections.

Material Selection

- Zinc Electroplated (5µ coating thickness) for use in non-corrosive environment (e.g. interior use) Gold passivated: Metric coarse thread Silver passivated: Coil thread
- Hot Dip Galvanised (50µ coating thickness) for exterior non-marine environments
- Stainless T316 (A4) for all exposed applications including coastal environments

Testing

Material certificates and breaking strength results are recorded for all manufacturing batches. Please inform us at the time of order if you require certificates for your project.

Weldability

All Ancon QwikFoot and QwikFix inserts are fully weldable with no requirement for preheat or post heat treatment.

The zinc coating should be removed from standard and hot dip galvanised inserts by light grinding before welding with low hydrogen welding consumables.

Stainless steel inserts should be cleaned and welded with T316L stainless welding consumables.

Bracing Insert Bolt (UC16)

For non-permanent fixings like brace connections, Leviat offers the UniCoil Bracing Insert Bolts BIB. These bolts are equipped with the UniCoil thread and can be used with Ancon UCQF1696Z QwikFoot Threaded Inserts and Ancon FERB3496Z QwikFix Threaded Inserts. Unicoil products have smooth rounded threads which resist damage and clogging and are designed to be re-used.

Unicoil Threaded Inserts UCQF16967 and FERB3496Z are designed to exceed the capacity of the BIB bolts.

Product Code	Product Description	Length L mm	Spanner size mm	Cross section A mm ²	Tensile Strength MPa	Tensile Capacity kN
BIB3465Z	Bracing Insert Bolt ¾ x 65	65	30	198.6	490	97.3
BIB3485Z	Bracing Insert Bolt ¾ x 85	85	30	198.6	490	97.3

Installation

Installation in Concrete

Threaded inserts can be installed using different installation methods depending on the situation and the preferences of the installer.

Panel edge using Nailing Plate

Top side using Precast Chair

Bottom side using nailing plate

Bottom side using stick on Nailing Plate (normally in combination with steel formwork)

*To achieve consistent results in regards to location and orientation of the insert, we recommend the use of the Precast Chair instead of "puddling in". Check www.ancon.co.nz for Installation Instructions.

Installation of the bolts

Ancon QwikFoot and QwikFix Threaded Inserts are designed to exceed the capacity of a grade 4.6 bolt. The bolts should be installed using a calibrated torque wrench with the torque recommended by Leviat. If bolts of a higher grade are installed, the torque must be limited to the installation torque of a grade 4.6 bolt to avoid possible damage to bolt, Threaded Insert and surrounding concrete.

Impact wrenches, so called "rattle guns" should not be used. They can cause serious, uncontrolled overload of bolt and Threaded Insert with unknown consequences.

Recommended tightening torques in Nm

Thread	Grade 4.6 Dry condition	Grade 4.6 lubricated
M10	18	16
M12	31	27
M16	75	66
M20	150	130
M24	170	150
UC16	100	-

These recommended torque values for new metric bolts are based on a proof stress of 180MPa which relates to 75% of the yield strength for grade 4.6 bolt for diameters M10 to M20 and on 120MPa, which relates to 50% yield for bolts diameter M24.

The torque for the UC 16 bolt is based on testing.

Determining the Bolt Length

The bolt should be of sufficient length to ensure a minimum thread engagement of 1.5 times bolt diameter.

 $L_{S,max} = T_d + k + g$ $L_{S,min} = s + k + g$

with:

- $\rm T_{\rm d}$ = Thread depth of the insert as shown on page 5,6 and 7
- $\ensuremath{\mathsf{s}}$ = required thread engagement as shown below
- k = Recess (8 mm for Ancon Nail Plate)
- g = clamp thickness (includes washers)

Minimum Thread Engagement

Thread	Required Thread Engagement
	S
	mm
M10	15
M12	18
M16	24
M20	30
M24	36
UC16	25

Precast Chairs for QwikFoot

QwikFoot inserts when used with the Precast Chair lock into position which eliminates the costs associated with the repair of lost, misplaced inserts.

- Easy to assemble, fast to install, saves labour costs
- Strong, robust one-piece design •
- · Positive click together lock between chair and insert
- Designed to fit within the mesh
- Rigidly locates the crossbar providing positive location •
- Stable, does not float or move .
- One chair fits all QwikFoot inserts •
- Available for panel thicknesses from 100 to 200mm

Precast Chairs

Part Code	For Panel Thickness (mm)	Quantity Per bag
PC125	125	100
PC145	145	100
PC150	150	100
PC170	170	100
PC175	175	100
PC180	180	100
PC195	195	100
PC200	200	100

The panel thickness in the above table is based on 96mm QwikFoot inserts.

Super Chair for QwikFix

The Super Chair supports the cross bar to ensure that the QwikFix insert is positioned at the correct height. A unique feature of the Super Chair design is that it provides for two different panel thicknesses by simply rotating the chair 90 degrees.

Super Chairs

Size (mm)	Part Code	Quantity per Bag	Product
125 / 150	SC125150	50	Super Cha
150 / 175	SC150175	50	Plug Shor
175 / 200	SC175200	50	Super Cha Plug Long

Super Chair Plugs/Dowels

Product	Part Code	Quantity per Bag
Super Chair Plug Short	SCPLUGS	100
Super Chair Plug Long	SCPLUGL	100
Super Chair	SCDOWEL	100

For 'tilt-up' applications Super Chair Plugs and Super Chair Dowels are used to accurately position inserts. The plug or the dowel are placed into a drilled hole to avoid movement. One Super Chair plug or two Super Chair dowels should be used with every Super Chair.

Antenna Caps

The use of Antenna Caps is recommended with all ferrules that are installed in the face of a panel. The use of Antenna caps ensures that the ferrules can be found after the concrete is poured.

Nailing Plates

Typically used for attachment to formwork. Nailing plates are available as threaded nailing plates in diameters M10 to M24 as well as stick-on plates in diameters M12 to M20.

Super Chair Plug and Dowel

Nailing Plate

Structural Fixing Design

For the design of QwikFoot and QwikFix Threaded Inserts the following failure modes need to be taken in account:

- Steel failure of the bolt in tension (NZS 3404:1997 CI 9.3.2.2)
- Steel failure of the bolt in shear (NZS 3404:1997 Cl 9.3.2.1)
- Combined Steel failure of the bolt
- Steel Failure of the Threaded Insert in Tension (NZS 3101:2006 Cl 17.5.7.1)
- Concrete Breakout failure in tension (Concrete cone failure) (NZS 3101:2006 Cl 17.5.7.2)
- Concrete Pull-out failure*
- Concrete blow-out failure*
- Concrete Edge failure in shear (NZS 3101:2006 Cl 17.5.8.2 and Cl 17.5.8.3)
- Concrete pry-out failure (NZS 3101:2006 Cl 17.5.8.4)
- Combined Concrete failure
- * The concrete pull-out capacity and the concrete blow-out capacity exceed the concrete cone capacity for all Ancon Threaded Inserts and do not need to be checked.

The calculated lower characteristic strength in tension N and the calculated lower characteristic strength in shear V are the smallest of the above mentioned lower characteristic capacities of the connection.

Connections should be designed and detailed to avoid brittle failure of the connection point (NZS 3101 C17.6.5). All capacities that are related to concrete failure are considered brittle. The threaded insert should be designed in a way that steel failures govern the design. Alternatively the fixing can be designed as the weak link.

Bolt Capacities

The table below shows the capacities for structural bolts Grade 4.6 and 8.8.

Bolt Strengths and Capacities in kN

	Characteristic ISO 898-1:2 N	c Strength kN 009 Table 4 tf	Tension Ca NZS 3404:19 ¢s [.]	apacity kN 97 CI. 9.3.2.2 N _{tf}	Shear Ca NZS 3404:19 0.62·	ipacity kN 97 CI. 9.3.2.1 ∳ _s ·N _{tf}
Thread	Grade 4.6	Grade 8.8	Grade 4.6	Grade 8.8	Grade 4.6	Grade 8.8
M10	23.2	46.4	18.6	37.1	11.5	23.0
M12	33.7	67.4	27.0	53.9	16.7	33.4
M16	62.8	125.0	50.2	100.0	31.1	62.0
M20	98.0	203.0	78.4	162.4	48.6	100.7
M24	141.0	293.0	112.8	234.4	69.9	145.3
UC16	76.8	-	not use	ed for permanent	t structural conn	ections

Note: $f_s = 0.8$ (NZS 3404:1997 Table 3.3: bolt in tension or shear)

T316 Stainless A4 bolts of strength class A4-50 can be designed using the capacities stated for Grade 4.6 bolts.

Combined loading in tension and shear for bolts

If bolts are subject to combined tension and shear the design should be done using the following formula:

$$\begin{split} & \left(\frac{N^*}{f_s \cdot N_{tf}}\right)^2 + \left(\frac{V^*}{f_s \cdot V_{tf}}\right)^2 \le 1 \\ & \text{with} \\ & N^* = \text{Design load in tension} \\ & V^* = \text{Design load in shear} \end{split}$$

When Threaded Inserts are installed with a recess, shear loads will create bending in the bolt that will have to be taken into consideration!

Tension Capacities of the Threaded Insert

The tension capacity of the threaded insert is defined by the steel capacity N_s of the section at the cross hole of the Threaded Insert:

Relevant section area of QwikFoot and QwikFix

Relevant section area of Short QwikFoot

The table below shows the tension capacities for Ancon Threaded Inserts type QwikFix and QwikFoot:

Product Code	Char. Tensile Capacity N _s kN	WLL according to GPG2018 - CI 10.5 N _s / 2.5 kN	Tension capacity NZS 3101:2006 - CI 17.5.7.1 0.75 * N _s kN
FF1050	30.6	12.2	23.0
FF1050S316	33.8	13.5	25.4
FF1245G	236.2	94.4	177.3
FF1250, FF1270, FF1296	49.7	19.9	37.3
FF1250S316	55.0	22.0	41.3
FF1645G	194.9	77.9	146.1
FF1670, FF1696G	105.8	42.3	79.4
FF1670S316, FF1696S316	130.5	52.2	97.9
FF2045G	141.7	56.6	106.2
FF2070, FF2096 ,FF20120	101.9	40.8	76.4
FF2096S316, FF2070SS316	112.7	45.1	84.5
FF2496G	230.9	92.4	173.2
FF2496Z	232.1	92.8	174.1
FF2496S316	256.8	102.7	192.6
FF1696ZH	101.9	40.8	76.4
FER1296*, FER1676*, FER1696*, FER2076*, FER2096*, FERB3496*	101.9 (70.1*)	40.8 (28.0)	76.4 (52.6)

* The tension capacity of the QwikFix Threaded Inserts is limited by shear capacity of the H12 cross bar (70.1kN) which provides the anchorage in concrete unless anchorage is achieved by structural welding to the reinforcement.

Tension Capacity of the Concrete

Concrete Capacity Design (CCD)

NZS 3101:2006 introduced the Concrete Capacity Design (CCD) method to determine the strength of the concrete breakout in tension. The capacities in this guide have been calculated in accordance with the CCD method as described in NZS 3101:2006 CI 17.5.7.2 for anchors in uncracked concrete.

Anchors Loaded in Tension

Concrete breakout (cone) failure

$N_{cb} = \psi_1 \cdot \psi_2 \cdot \psi_3 \frac{F}{A}$	<u>*n</u> .N _b
---	---------------------------

		no no
where		
N _{cb}	=	Nominal concrete breakout strength in tension of a Threaded Insert or group of Threaded Inserts
N _b	=	Basic concrete breakout strength in tension of a single Threaded Insert in cracked concrete
A _n	=	Projected rectilinear area on the free surface of the concrete member due to the assumed 35° concrete failure surface of a single Threaded Insert or a group of Threaded Inserts
Ano	=	Projected concrete failure area of one Threaded Insert when not limited by edge distance

The modification factors ψ_1 , ψ_2 and ψ_3 are defined as follows:

Modification factor to account for anchor groups ψ_1

ψ_1	=	$\left(\frac{1}{1+\frac{2\cdot e'_n}{3\cdot h_{ef}}}\right) \le 1.0$
where		
e'n	=	The distance between the resultant tension load on a group of Threaded Inserts loaded in tension and the centroid of the group (always taken as positive)
h _{ef}	=	Effective embedment depth

 $\psi_1 = 1$ for single anchors and for anchor groups of two anchors that are centrally loaded.

Modification factor to account for edge distances smaller than 1.5 \cdot h_{ef} , ψ_2

ψ2	=	$0.7 + 0.3 \cdot \left(\frac{c_i}{1.5 \cdot h_{ef}}\right) \le 1.0$
where		
Ci	=	Smallest edge distance

Modification factor to account for cracking ψ_3

ψ_3	=	1.25 for threaded inserts in uncracked concrete
ψ_3	=	1.00 for concrete which is cracked at service levels

Note: The capacity tables in the back of this brochure show the values for anchors in uncracked concrete. When inserts are located in tension zones where cracks may be expected, the loads in the table should be reduced by 20%

Characteristic tension resistance of a single insert

The characteristic resistance to concrete cone failure for a single insert, placed at a minimum distance 1.5h_{ef} from any edge is -

Nb	=	$k \cdot \sqrt{f'_c} \cdot h_{ef}^{1.5}$
where		
k	=	10 for cast-in anchors (NZS 3101:2006 Cl 17.5.7.2)
f' _c	=	Characteristic concrete strength (not exceeding 70MPa)
h _{ef}	=	Effective embedment depth, mm

Effective embedment depth h_{ef}

Effect of insert spacing and edge distance

The geometric effect of insert spacing and edge distances is determined by the ratio ${\rm A_n}$ /A $_{\rm no,}$ where -

A _{no}	=	Actual projected area, limited by overlapping concrete cones of adjacent inserts (s < s _{cr,N}) as well as by edges of the concrete member (c < c _{cr,N}) (refer to Figure).
An	=	Reference projected area of a single insert
	=	S _{cr,N} · S _{cr,N}
s _{cr,N}	=	2c _{cr,N}
C _{cr,N}	=	1.5h _{ef}
A _{no}	=	9h _{ef} ²

Section through concrete breakout cone

Threaded Inserts loaded in shear towards an edge

The concrete breakout strength of a Threaded Insert, or group of Threaded Inserts, in shear when loaded perpendicular to an edge shall not exceed:

V _{cb}	=	$\frac{A_V}{A_{VO}} \cdot \psi_5 \cdot \psi_6 \cdot \psi_7 \cdot V_b$
where		
V _{cb}	=	Lower characteristic concrete breakout strength in shear of a single or a group of Threaded Inserts
Av	=	Projected concrete failure area of a Threaded Insert or group of Threaded Inserts in shear
A _{vo}	=	Projected concrete failure area of a Threaded Insert in shear, when not limited by corner influences, spacing or member thickness
V _b	=	Basic concrete breakout strength for a single anchor in shear

Basic concrete breakout strength for a single anchor in shear

V _b	=	$\min\left(0.6 \cdot \left(\frac{1}{d_o}\right)^{0.2} \cdot \lambda \cdot \sqrt{d_o \cdot f'}_c \cdot (c_1)^{1.5}, \qquad 3.8 \cdot \lambda \cdot \sqrt{f'}_c \cdot (c_1)^{1.5}\right)$
where		
d _o	=	Outside diameter of the Threaded Insert
с ₁	=	Distance from the centre of an anchor to the edge of the concrete in direction of the load

The modification factors $\,\psi_{5}\,,\!\psi_{6}$ and ψ_{7} are defined as follows:

Modification factor to account for cracking ψ_5

ψ_5	=	$\left(\frac{1}{1+\frac{2\cdot e_v}{3\cdot c_1}}\right) \le 1.0$
where		
e'v	=	The distance between the point of shear force application and centroid of the group of anchors resisting in shear in the direction of the applied shear
h _{ef}	=	Effective embedment depth

 $\psi_5 = 1$ for single anchors and for anchor groups of two anchors that are centrally loaded.

Modification factor to account for edge distance ψ_6

$$\psi_6 = 0.7 + 0.3 \cdot \left(\frac{c_2}{1.5 \cdot c_1}\right) \le 1.0$$
 where

 c_2 = Edge distance perpendicular to the load direction

Modification factor to account for cracking ψ_7

ψ_7	=	1.4 for threaded inserts in uncracked concrete
where		
Ψ7	=	1.0 for concrete which is cracked at service levels

Note: The capacity tables in the back of this brochure show the values for anchors in uncracked concrete. When inserts are located in tension zones where cracks may be expected, the loads in the table should be reduced by 30%

Concrete pry-out failure

Shear loaded inserts may fail by concrete pry-out where the insert is located well away from an edge. This type of failure can occur with short inserts, low concrete strengths and high strength bolts. The characteristic resistance to pry-out V_{cp} may be calculated as follows:

 $k_{cp} = 2.0 \text{ for } h_{ef} \ge 60 \text{ mm}$

Threaded inserts subject to combined tension and shear loads

Inserts subject to combined tension and shear loads may be designed using the following tri-linear approach.

If $\frac{V^*}{\phi V_n} \le 0.2$ then the full tensile capacity ϕV_n is permitted

If $\frac{N^{\star}}{\phi N_n} \leq 0.2$ then the full tensile capacity ϕV_n is permitted

For all other cases then the following inequality must be satisfied:

QwikFoot Design for Structural Fixings

The following values are based on NZS 3101:2006 section 17

Inserts located in elements with a minimum edge distance, min $c_1 \ge 1.5h_{ef}$

Minimum edge distance c_1 and insert spacing s_1 to reach full concrete cone capacity

Insert Length (mm)	50	70	96
min c ₁ (mm)	85	115	155
min s ₁ (mm)	165	225	305

Cone breakout (tension) capacity of a QwikFoot Threaded Insert located with minimum edge distance and insert spacing

Concrete Cone Breakout Capacity ($\phi_c N_{cb}$); kN

OwikFoot Part Code		Concre	te Compres	sive Stren	gth MPa	
	15	20	25	32	40	50
FF1245G, FF1645G, FF2045G	11.1	12.8	14.4	16.3	18.2	20.3
FF1050, FF1250	12.8	14.8	16.6	18.7	21.0	23.4
FF1270, FF1670, FF2070	20.2	23.4	26.1	29.6	33.0	36.9
FF1296, FF1696, FF2096, FF2496	31.7	36.6	40.9	46.3	51.7	57.8

Note: QwikFoot inserts do not require a crossbar to achieve the capacities shown in this table.

All capacities assume that a nailing plate is used to increase h_{ef} by 8mm.

All design values calculated using a reduction factor $f_c = 0.65$ according to NZS 3101-Eq.17-4(a)

Concrete capacities of inserts located close to edges or each other

The design tables on pages 21 - 25 provide tension and shear capacities based on steel failure or concrete breakout, whichever is the minimum. There are three cases considered:

- close to one edge
- close to two edges at right angles to each other
- a group of two inserts at close spacing

For more complicated configurations please refer either to NZS 3101:2006 or contact us.

In each table, the loads are colour coded to show the load range for each bolt size M10-M24 and grades G4.6 and 8.8.

Design Method

Sample Calculation 1

Fix a bearing plate with a Grade 4.6 bolt using a single QwikFoot Threaded Insert in 50MPa concrete with the nearest edge at 300mm. The factored tension load $N^* = 15$ kN and factored shear load $V^* = 30$ kN.

Check steel capacity for the bolt (see page 12)

N^{*} ≤ 18.6kN → minimum bolt diameter for tension is M10 16.7kN (M12 G4.6 bolt) < V^{*} ≤ 31.1kN (M16 G4.6 bolt) → minimum bolt diameter for shear is M16 $\left(\frac{15}{50.2}\right)^2 + \left(\frac{30}{31.1}\right)^2 = 1.02 > 1.0 \rightarrow \text{An M20 bolt is required for combined load.}$

Check concrete capacity for the threaded inserts:

For M20 bolt, inserts with length of 45, 70 and 96mm are available.

For FF2045 from first table on page 21,

 $\phi_c N_{cb} = 20.3 > N^*$ and $\phi_c V_{cb} = 20.3 < V^* \rightarrow not$ OK, check FF2070

For FF2070 from first table on page 23,

 $\phi_c N_{cb} = 36.9 > N^*$ and $\phi_c V_{cb} = 48.6 > V^* \rightarrow OK$ check combined loading

$$\frac{15}{36.9}$$
 + $\frac{30}{48.6}$ = 1.02 < 1.2 **→ FF2070** is OK

Sample Calculation 2

Same application as Example 1 however the insert is located at a distance of 125mm from one edge.

Try the FF2070 as above:

From first table on page 23,

$$\begin{split} \phi_c N_{cb} &= 36.9 > \mathsf{N}^* \text{ and } \phi_c V_{cb} = 34.2 > \mathsf{V}^* \twoheadrightarrow \mathsf{OK} \text{ check combined loading} \\ \frac{15}{36.9} &+ \frac{30}{34.2} &= 1.28 > 1.2 \twoheadrightarrow \textbf{not} \text{ OK, check FF2096} \end{split}$$

From first table on page 24,

 $\phi_c N_{cb} = 50.2 > N^*$ and $\phi_c V_{cb} = 34.2 > V^* \rightarrow OK$ check combined loading $\frac{15}{50.2} + \frac{30}{34.2} = 1.17 < 1.2 \rightarrow FF2096$ is OK

How to find capacity values in tables

Table on page 23

			Tensile Ca	apacity kN						Shear Ca	pacity kN		
Single		Capacity li	mited by e	ither f _c · N _c	_{cb} or f _s · N _s	;			Capacity li	mited by e	ither f _c · V _c	b or fs · Vs	
Edge Distance	(Concrete C	ompressi	ve Strengtl	h f` _c - MPa	1		(Concrete C	ompressiv	ve Strength	i f` _c - MPa	
c ₁	15	20	25	32	40	50	1	15	20	25	32	40	50
50	12.2	14.1	15.8	17.8	19.9	22.3		4.3	5.0	5.6	6.4	7.1	7.9
75	15.2	17.6	19.7	22.3	24.9	27.8		8.0	9.2	10.3	11.7	13.0	17.6
100	18.6	21.4	24.0	27.1	30.3	33.9		12.3	14.2	15.9	19.2	21.5	24.0
125	20.2	23.4	26.1	29.6	33.0	36.9		18.4	21.2	23.7	26.9	30.3	34.2
150	20.2	23.4	26.1	29.6	33.0	36.9		24.2	27.9	31.8	35.9	40.2	44.9

Table on page 24

			Tensile Ca	apacity kN												
Single		Capacity li	mited by e	ither f _c · N _c	_{cb} or f _s · N _s	6	-		Capacity li	mited by e	ither f _c · V _c	_{cb} or f _s · V _s				
Edge Distance		Concrete C	Compressiv	ve Strength	n f` _c - MPa	1	-	Concrete Compressive Strength f `c - MPa								
c ₁	15	20	25	32	40	50		15	20	25	32	40	50			
50	16.9	19.5	21.8	24.7	27.6	30.8		4.6	5.3	6.0	6.7	7.5	8.4			
75	20.2	23.3	26.0	29.4	32.9	36.8		8.5	9.8	11.0	12.4	14.2	15.9			
100	23.7	27.4	30.6	34.6	38.7	43.3		13.1	15.1	17.3	19.6	21.9	24.5			
125	27.5	31.8	35.5	40.2	44.9	50.2		18.7	21.6	24.2	27.3	30.6	34.2			
150	31.6	36.5	40.8	46.1	51.6	57.7		24.6	28.4	31.8	35.9	40.2	44.9			

Break-out areas of inserts near edges or other inserts

QwikFoot insert located near two edges at right angles to each otherTensile Capacity - kN: $\phi_c \cdot N_{cb}$ Shear Capacity - kN: $\phi_c \cdot V_{cb}$

Short QwikFoot 45mm long - Single insert located near one edge Design capacity in combination with G4.6 Bolts: M12 Green, M16 Purple

Design Capa	City in Com	Dination w	IUI G4.0 D	0115.10112	Green, wi	orupie					
			Tensile Ca	pacity kN						Shear Ca	pacity
Single		Capacity li	mited by e	ither f _c · N _c	b or f _s ⋅ N _s	;			Capacity li	mited by e	ither f
Edge Distance		Concrete C	Compressiv	ve Strength	1			Concrete C	ompressiv	ve Stre	
c ₁	15	20	25	32	40	50	1	5	20	25	32
50	8.3	9.6	10.8	12.2	13.6	15.2	4	.4	5.1	5.7	6.
75	11.1	12.8	14.4	16.3	18.2	20.3	8	.2	9.4	10.5	11
100	11.1	12.8	14.4	16.3	18.2	20.3	1	1.1	12.8	14.4	16
125	11.1	12.8	14.4	16.3	18.2	20.3	1	1.1	12.8	14.4	16
150	11.1	12.8	14.4	16.3	18.2	20.3	1	1.1	12.8	14.4	16

Shear Capacity kN															
	Capacity limited by either $f_c \cdot \mathbf{V}_{cb}$ or $f_s \cdot \mathbf{V}_s$														
(Concrete Compressive Strength f `c - MPa														
15	15 20 25 32 40 50														
4.4	5.1	5.7	6.5	7.3	8.1										
8.2	9.4	10.5	11.9	13.3	14.9										
11.1	12.8	14.4	16.3	18.2	20.3										
11.1	12.8	14.4	16.3	18.2	20.3										
11.1	12.8	14.4	16.3	18.2	20.3										

The full shear capacity can only be reached for slab thicknesses bigger than $1.5\cdot c_1$

Short QwikFoot 45mm long - Single insert located near two edges at right angles to each other Design capacity in combination with G4.6 Bolts: M12 Green, M16 Purple

			Concre	te or Steel	Tensile Ca	apacity		Concrete or Steel Shear Capacity								
First	Second		Capacity li	mited by ei	ither f _c · N _c	b or f _s ⋅ N _s			Capacity limited by either f _c · V _{cb} or f _s · V _s Concrete Compressive Strength f` _c - MPa							
Edge Distance	Edge Distance		Concrete C	ompressiv	ve Strengtl	n f` _c - MPa										
c ₁	c ₂	15	20	25	32	40	50	15	20	25	32	40	50			
50	50	7.0	8.0	9.0	10.2	11.4	12.7	3.3	3.8	4.3	4.9	5.4	6.1			
50	100	8.3	9.6	10.8	12.2	13.6	15.2	4.4	5.1	5.7	6.5	7.3	8.1			
100	100	11.1	12.8	14.4	16.3	18.2	20.3	9.4	10.9	12.2	13.8	15.4	17.2			
100	150	11.1	12.8	14.4	16.3	18.2	20.3	11.1	12.8	14.4	16.3	18.2	20.3			
150	150	11.1	12.8	14.4	16.3	18.2	20.3	11.1	12.8	14.4	16.3	18.2	20.3			
200	150	11.1	12.8	14.4	16.3	18.2	20.3	11.1	12.8	14.4	16.3	18.2	20.3			

The full shear capacity can only be reached for slab thicknesses bigger than 1.5 \cdot c_1

1

A group of TWO Short QwikFoot 50mm long - Threaded inserts located near one edge at various insert spacings Design capacity in combination with G4.6 Bolts: M12 Green, M16 Purple

			Concrete or Steel Tensile Capacity for a PAIR of Threaded Inserts							Concrete or Steel Shear Capacity for a PAIR of Threaded Inserts						
Single			Capacity li	mited by e	ither f _c • N _c	_b or f _s · N _s	5			Capacity li	mited by e	ither f _c • V _c	_{cb} or f _s · V _s			
Edge Distance	Spacing		Concrete C	ompressiv	ve Strength	n f` _c - MPa	1		(Concrete C	ompressiv	ve Strength	n f` _c - MPa			
c ₁	s ₁	15	20	25	32	40	50		15	20	25	32	40	50		
50	100	13.9	16.1	18.0	20.3	22.7	25.4		7.4	8.5	9.6	10.8	12.1	13.5		
100	100	18.5	21.4	23.9	27.1	30.3	33.9		16.8	19.3	21.6	24.5	27.4	30.6		
200	100	18.5	21.4	23.9	27.1	30.3	33.9		18.5	21.4	23.9	27.1	30.3	33.9		
50	200	16.7	19.3	21.5	24.4	27.3	30.5		8.9	10.3	11.5	13.0	14.5	16.2		
100	200	22.3	25.7	28.7	32.5	36.3	40.6		20.9	24.2	27.0	30.6	34.2	38.2		
200	200	22.3	25.7	28.7	32.5	36.3	40.6		22.3	25.7	28.7	32.5	36.3	40.6		
50	300	16.7	19.3	21.5	24.4	27.3	30.5		8.9	10.3	11.5	13.0	14.5	16.2		
100	300	22.3	25.7	28.7	32.5	36.3	40.6		22.3	25.7	28.7	32.5	36.3	40.6		
200	300	22.3	25.7	28.7	32.5	36.3	40.6		22.3	25.7	28.7	32.5	36.3	40.6		
50	400	16.7	19.3	21.5	24.4	27.3	30.5		8.9	10.3	11.5	13.0	14.5	16.2		
100	400	22.3	25.7	28.7	32.5	36.3	40.6		22.3	25.7	28.7	32.5	36.3	40.6		
200	400	22.3	25.7	28.7	32.5	36.3	40.6		22.3	25.7	28.7	32.5	36.3	40.6		

The full shear capacity can only be reached for slab thicknesses bigger than $1.5 \cdot c_1$

QwikFoot 50mm long - Single insert located near one edge

Design capacity in combination with G4.6 Bolts: M10 Orange, M12 Green

			Shear Ca	pacity kN											
Single		Capacity li	mited by ei	ither f _c · N _c	b or fs · Ns			Capacity li	mited by e	ither f _c · V _c	b or fs · Vs				
Edge Distance		Concrete C	Compressiv	ve Strength	n f` _c - MPa		Concrete Compressive Strength f `c - MPa								
c ₁	15	20	25	32	40	50	15	20	25	32	40	50			
50	9.1	10.5	11.7	13.3	14.8	16.6	3.8	4.4	4.9	5.6	6.3	7.0			
75	11.9	13.8	15.4	17.4	19.5	21.8	7.0	8.1	9.1	10.3	11.5	16.7			
100	12.8	14.8	16.6	18.7	21.0	23.4	10.8	13.4	14.9	16.7	16.7	16.7			
125	12.8	14.8	16.6	18.7	21.0	23.4	12.8	14.8	16.6	16.7	16.7	16.7			
150	12.8	14.8	16.6	18.7	21.0	23.4	12.8	14.8	16.6	16.7	16.7	16.7			

The full shear capacity can only be reached for slab thicknesses bigger than $1.5 \cdot c_1$

QwikFoot 50mm long - Single insert located near two edges at right angles to each other

Design capacity in combination with G4.6 Bolts: M10 Orange, M12 Green

		Concrete or Steel Tensile Capacity							Concr	ete or Stee	I Shear Ca	pacity			
First	Second		Capacity li	mited by e	ither f _c · N _c	b or f _s ⋅ N _s			Capacity li	mited by e	ither f _c · V _c	b or fs · Vs			
Edge Distance	Edge Distance	(Concrete C	Compressiv	ve Strength	n f` _c - MPa		Concrete Compressive Strength f `c - MPa							
c ₁	c ₂	15	20	25	32	40	50	15	20	25	32	40	50		
50	50	7.3	8.4	9.4	10.7	11.9	13.3	2.9	3.3	3.7	4.2	4.7	5.2		
50	100	9.1	10.5	11.7	13.3	14.8	16.6	3.8	4.4	4.9	5.6	6.2	7.0		
100	100	12.8	14.8	16.6	18.6	21.0	23.4	8.1	9.4	10.5	12.7	14.2	15.9		
100	150	12.8	14.8	16.6	18.6	21.0	23.4	9.7	13.5	14.9	16.7	16.7	16.7		
150	150	12.8	14.8	16.6	18.6	21.0	23.4	12.8	14.8	16.6	16.7	16.7	16.7		
200	150	12.8	14.8	16.6	18.6	21.0	23.4	12.8	14.8	16.6	16.7	16.7	16.7		

The full shear capacity can only be reached for slab thicknesses bigger than 1.5 $\cdot\,c_1$

A Group of TWO QwikFoot 50mm long - Threaded Inserts located near one edge at various insert spacings Design capacity in combination with G4.6 Bolts: M10 Orange, M12 Green

Jesigir Cape				Concre for a	ete or Stee PAIR of Th	I Shear Ca readed In	pacity serts									
Single			Capacity li	mited by e	ither f _c · N _c	b or f _s ⋅ N _s				Capacity li	mited by e	ither f _c · V _c	b or fs · Vs			
Edge Distance	Spacing		Concrete C	Compressiv	ve Strength	f` _c - MPa	1	Concrete Compressive Strength f `c - MPa								
с ₁	s ₁	15	20	25	32	40	50		15	20	25	32	40	50		
50	100	14.6	16.9	18.8	21.3	23.8	26.7		6.4	7.4	8.2	9.3	10.4	11.6		
100	100	20.6	23.8	26.6	30.1	33.7	37.6		14.4	16.7	18.6	21.1	25.2	28.2		
200	100	20.6	23.8	26.6	30.1	33.7	37.6		20.6	23.8	26.6	30.1	33.4	33.4		
50	200	18.2	21.0	23.5	26.6	29.7	33.2		7.7	8.8	9.9	11.2	12.5	14.0		
100	200	25.7	29.6	33.1	37.5	41.9	46.9		18.0	20.8	24.9	28.2	31.5	33.4		
200	200	25.7	29.6	33.1	37.5	41.9	46.9		25.7	29.6	33.1	33.4	33.4	33.4		
50	300	18.2	21.0	23.5	26.6	29.7	33.2		7.7	8.8	9.9	11.2	12.5	14.0		
100	300	25.7	29.6	33.1	37.5	41.9	46.9		21.7	26.7	29.9	33.4	33.4	33.4		
200	300	25.7	29.6	33.1	37.5	41.9	46.9		25.7	29.6	33.1	33.4	33.4	33.4		
50	400	18.2	21.0	23.5	26.6	29.7	33.2		7.7	8.8	9.9	11.2	12.5	14.0		
100	400	25.7	29.6	33.1	37.5	41.9	46.9		21.7	26.7	29.9	33.4	33.4	33.4		
200	400	25.7	29.6	33.1	37.5	41.9	46.9		25.7	29.6	33.1	33.4	33.4	33.4		

The full shear capacity can only be reached for slab thicknesses bigger than $1.5 \cdot c_1$

QwikFoot 70mm long - Single insert located near one edge

Design capacity in combination with G4.6 Bolts: M12 Green, M16 Purple, M20 Red

			Tensile Ca	apacity kN					Shear Ca	pacity kN		
Single		Capacity li	mited by e	ither f _c · N	_{cb} or f _s · N _s			Capacity li	mited by e	ither f _c · V _c	b or fs · Vs	
Edge Distance		Concrete C	ompressiv	ve Strengtl	h f` _c - MPa		(Concrete C	Compressiv	ve Strength	n f` _c - MPa	
c ₁	15	20	25	32	40	50	15	20	25	32	40	50
50	12.2	14.1	15.8	17.8	19.9	22.3	4.3	5.0	5.6	6.4	7.1	7.9
75	15.2	17.6	19.7	22.3	24.9	27.8	8.0	9.2	10.3	11.7	13.0	17.6
100	18.6	21.4	24.0	27.1	30.3	33.9	12.3	14.2	15.9	19.2	21.5	24.0
125	20.2	23.4	26.1	29.6	33.0	36.9	18.4	21.2	23.7	26.9	30.3	34.2
150	20.2	23.4	26.1	29.6	33.0	36.9	24.2	27.9	31.8	35.9	40.2	44.9
175	20.2	23.4	26.1	29.6	33.0	36.9	30.5	35.8	48.6	45.3	48.6	48.6
200	20.2	23.4	26.1	29.6	33.0	36.9	37.9	43.7	48.6	48.6	48.6	48.6
225	20.2	23.4	26.1	29.6	33.0	36.9	40.5	46.8	48.6	48.6	48.6	48.6
250	20.2	23.4	26.1	29.6	33.0	36.9	40.5	46.8	48.6	48.6	48.6	48.6
275	20.2	23.4	26.1	29.6	33.0	36.9	40.5	46.8	48.6	48.6	48.6	48.6
300	20.2	23.4	26.1	29.6	33.0	36.9	40.5	46.8	48.6	48.6	48.6	48.6

The full shear capacity can only be reached for slab thicknesses bigger than 1.5 \cdot c_1

QwikFoot 70mm long - Single insert located near two edges at right angles to each other

Design capacity in combination with G4.6 Bolts: M12 Green, M16 Purple, M20 Red

				Tensile Ca	apacity kN					Shear Ca	oacity kN		
First	Second		Capacity li	mited by e	ither f _c · N _c	_{cb} or f _s · N _s			Capacity li	mited by e	ither f _c · V _c	b or fs · Vs	
Edge Distance	Edge Distance		Concrete C	Compressiv	ve Strengtl	h f` _c - MPa		 (Concrete C	ompressiv	e Strength	n f` _c - MPa	l
с ₁	с ₂	15	20	25	32	40	50	 15	20	25	32	40	50
50	50	8.8	10.2	11.4	12.9	14.4	16.1	3.3	3.8	4.2	4.8	5.3	6.0
50	100	11.6	13.4	14.9	16.9	18.9	21.1	4.3	5.0	5.6	6.4	7.1	7.9
100	100	17.6	20.3	22.7	25.7	28.7	32.1	9.2	10.7	11.9	13.5	15.1	18.0
100	150	18.6	21.4	24.0	27.1	30.3	33.9	12.3	14.2	15.9	19.2	21.5	24.0
150	150	20.2	23.4	26.1	29.6	33.0	36.9	18.1	20.9	23.4	26.5	29.6	33.7
200	150	20.2	23.4	26.1	29.6	33.0	36.9	23.7	27.4	30.6	35.3	39.4	44.1
200	200	20.2	23.4	26.1	29.6	33.0	36.9	27.9	32.8	36.7	41.5	46.4	48.6
300	150	20.2	23.4	26.1	29.6	33.0	36.9	37.1	42.9	47.9	48.6	48.6	48.6
300	200	20.2	23.4	26.1	29.6	33.0	36.9	40.5	46.8	48.6	48.6	48.6	48.6
300	300	20.2	23.4	26.1	29.6	33.0	36.9	40.5	46.8	48.6	48.6	48.6	48.6

The full shear capacity can only be reached for slab thicknesses bigger than $1.5 \cdot c_1$

A Group of TWO QwikFoot 70mm long - Threaded Inserts located near one edge at various insert spacings

Design capacity in combination with G4.6 Bolts: M12 Green, M16 Purple, M20 Red

			Concre for a	te or Steel PAIR of Th	Tensile Ca readed Ins	apacity serts				Concre for a	ete or Stee PAIR of Th	I Shear Ca preaded Ins	pacity < serts	
Single			Capacity li	mited by e	ither f _c · N _c	_{cb} or f _s · N _s				Capacity lin	nited by e	ither f _c · V _c	b or fs · Vs	
Edge Distance	Spacing	(Concrete C	Compressiv	ve Strength	n f` _c - MPa				Concrete C	ompressiv	ve Strength	f` _c - MPa	
c ₁	s ₁	15	20	25	32	40	50		15	20	25	32	40	50
50	100	17.7	20.4	22.8	25.8	28.9	32.3		7.2	8.4	9.4	10.6	11.8	13.2
100	100	26.9	31.0	34.7	39.3	43.9	49.1		6.4	18.9	21.2	24.0	26.8	29.9
200	100	29.3	33.8	37.8	42.8	47.8	53.5	4	13.4	50.1	56.0	64.5	72.2	80.7
300	100	29.3	33.8	37.8	42.8	47.8	53.5	6	62.2	89.3	97.1	97.1	97.1	97.1
50	200	23.1	26.7	29.9	33.8	37.8	42.3		8.7	10.0	11.2	12.7	14.2	15.9
100	200	35.2	40.6	45.4	51.4	57.4	64.2	1	20.5	23.7	26.5	29.9	35.8	40.0
200	200	38.3	44.3	49.5	56.0	62.6	70.0	4	9.6	57.3	65.2	73.8	82.5	92.2
300	200	38.3	44.3	49.5	56.0	62.6	70.0	8	35.3	97.1	97.1	97.1	97.1	97.1
50	300	24.4	28.2	31.5	35.7	39.9	44.6		8.7	10.0	11.2	12.7	14.2	15.9
100	300	37.1	42.9	47.9	54.2	60.6	67.8	1	24.6	28.4	31.8	38.4	43.0	48.0
200	300	40.5	46.7	52.2	59.1	66.1	73.9	Ę	5.8	65.6	73.4	83.0	92.8	97.1
300	300	40.5	46.7	52.2	59.1	66.1	73.9	ę	92.8	97.1	97.1	97.1	97.1	97.1
50	400	24.4	28.2	31.5	35.7	39.9	44.6		8.7	10.0	11.2	12.7	14.2	15.9
100	400	37.1	42.9	47.9	54.2	60.6	67.8	2	24.6	28.4	31.8	38.4	43.0	48.0
200	400	40.5	46.7	52.2	59.1	66.1	73.9	6	62.0	72.9	81.5	92.2	97.1	97.1
300	400	40.5	46.7	52.2	59.1	66.1	73.9	ę	97.1	97.1	97.1	97.1	97.1	97.1

The full shear capacity can only be reached for slab thicknesses bigger than $1.5 \cdot c_1$

Ancon

23

QwikFoot 96mm long - Single insert located near one edge

Design capacity in combination with G4.6 Bolts: M12 Green, M16 Purple, M20 Red, M24 Blue.

			Tensile Ca	pacity kN					Shear Ca	pacity kN		
Single		Capacity li	mited by e	ither f _c · N _c	_{cb} or f _s ⋅ N _s		 (Capacity li	mited by e	ither f _c · V _c	to $r_{s} \cdot V_{s}$	
Edge Distance		Concrete C	ompressiv	ve Strength	n f` _c - MPa		 (Concrete C	ompressiv	ve Strength	n f` _c - MPa	
c ₁	15	20	25	32	40	50	15	20	25	32	40	50
50	16.9	19.5	21.8	24.7	27.6	30.8	4.6	5.3	6.0	6.7	7.5	8.4
75	20.2	23.3	26.0	29.4	32.9	36.8	8.5	9.8	11.0	12.4	14.2	15.9
100	23.7	27.4	30.6	34.6	38.7	43.3	13.1	15.1	17.3	19.6	21.9	24.5
125	27.5	31.8	35.5	40.2	44.9	50.2	18.7	21.6	24.2	27.3	30.6	34.2
150	31.6	36.5	40.8	46.1	51.6	57.7	24.6	28.4	31.8	35.9	40.2	44.9
175	31.7	36.6	40.9	46.3	51.8	57.9	31.0	35.8	40.0	45.3	50.6	56.6
200	31.7	36.6	40.9	46.3	51.8	57.9	37.9	43.7	48.9	55.3	61.9	69.2
225	31.7	36.6	40.9	46.3	51.8	57.9	45.2	52.2	54.8	66.0	69.9	69.9
250	31.7	36.6	40.9	46.3	51.8	57.9	52.9	61.6	68.3	69.9	69.9	69.9
275	31.7	36.6	40.9	46.3	51.8	57.9	61.6	69.6	69.6	69.9	69.9	69.9
300	31.7	36.6	40.9	46.3	51.8	57.9	63.4	69.6	69.6	69.9	69.9	69.9

The full shear capacity can only be reached for slab thicknesses bigger than $1.5\cdot c_1$

QwikFoot 96mm long - Single insert located near two edges at right angles to each other

Design capacity in combination with G4.6 Bolts: M12 Green, M16 Purple, M20 Red, M24 Blue.

				Tensile Ca	pacity kN					Shear Ca	pacity kN		
First	Second		Capacity li	mited by e	ither f _c · N _c	_b or f _s · N _s		 (Capacity li	mited by e	ither f _c · V _c	b or fs · Vs	
Edge Distance	Edge Distance		Concrete C	ompressiv	ve Strength	n f` _c - MPa		 C	Concrete C	ompressiv	e Strength	n f` _c - MPa	
с ₁	c ₂	15	20	25	32	40	50	15	20	25	32	40	50
50	50	11.2	13.0	14.5	16.4	18.4	20.5	3.5	4.0	4.5	5.1	5.7	6.3
50	100	14.0	16.2	18.1	20.5	22.9	25.6	4.6	5.3	6.0	6.7	7.5	8.4
100	100	19.7	22.8	25.5	28.8	32.2	36.0	9.8	11.3	12.6	14.3	16.0	18.3
100	150	23.6	27.3	30.5	34.5	38.6	43.2	13.1	15.1	17.3	19.6	21.9	24.5
150	150	31.5	36.4	40.7	46.0	51.4	57.5	18.5	21.3	23.8	27.0	30.1	33.7
200	150	31.6	36.5	40.8	46.1	51.6	57.7	24.1	27.9	31.2	35.3	39.4	44.1
200	200	31.7	36.6	40.9	46.3	51.8	57.9	28.4	32.8	36.7	41.5	46.4	51.9
300	150	31.6	36.5	40.8	46.1	51.6	57.7	37.1	42.9	47.9	54.2	60.6	67.8
300	200	31.7	36.6	40.9	46.3	51.8	57.9	41.9	48.4	54.1	61.2	68.4	69.9
300	300	31.7	36.6	40.9	46.3	51.8	57.9	52.2	60.3	67.4	69.9	69.9	69.9
500	500	31.7	36.6	40.9	46.3	51.8	57.9	63.4	69.9	69.9	69.9	69.9	69.9

The full shear capacity can only be reached for slab thicknesses bigger than 1.5 \cdot c_1

A Group of TWO QwikFoot 96mm long - Threaded Inserts located near one edge at various insert spacings Design capacity in combination with G4.6 Bolts: M12 Green, M16 Purple, M20 Red, M24 Blue.

			Concre for a	ete or Steel PAIR of Th	Tensile Ca readed In	apacity serts			Concr for a	ete or Stee PAIR of T	el Shear Ca hreaded In	pacity serts	
Single			Capacity li	mited by e	ither f _c · N _c	_{cb} or f _s · N _s	1		Capacity I	imited by e	either f _c · V	_{cb} or f _s · V _s	
Edge Distance	Spacing		Concrete (Compressiv	ve Strengtl	h f` _c - MPa	1		Concrete	Compressi	ve Strengt	h f` _c - MPa	ı
c ₁	s ₁	15	20	25	32	40	50	15	20	25	32	40	50
50	100	22.5	26.0	29.0	32.8	36.7	41.0	7.7	8.9	9.9	11.2	12.9	14.1
100	100	31.6	36.5	40.8	46.1	51.5	57.6	17.4	20.1	22.5	25.4	28.4	31.8
200	100	42.2	48.8	54.5	61.7	68.9	77.1	42.2	51.0	57.1	64.5	72.2	80.7
300	100	42.2	48.8	54.5	61.7	68.9	77.1	77.3	89.3	99.8	112.9	126.3	139.9
50	200	28.1	32.4	36.2	41.0	45.8	51.3	9.2	10.7	11.9	13.5	15.1	16.9
100	200	39.4	45.5	50.9	57.6	64.4	72.0	21.8	25.1	28.1	31.8	35.5	40.8
200	200	52.7	60.9	68.1	77.0	86.1	96.3	50.5	58.3	65.2	73.8	82.5	92.2
300	200	52.7	60.9	68.1	77.0	86.1	96.3	85.1	98.2	109.8	124.2	138.9	139.9
50	300	33.7	38.9	43.5	49.2	55.0	61.5	9.2	10.7	11.9	13.5	15.1	16.9
100	300	47.3	54.6	61.1	69.1	77.2	86.3	26.1	30.2	34.6	39.1	43.7	48.9
200	300	63.3	73.0	81.7	92.4	103.3	115.5	56.8	65.6	73.4	83.0	92.8	103.7
300	300	63.3	73.0	81.7	92.4	103.3	115.5	92.8	107.1	119.8	135.5	139.9	139.9
50	400	33.8	39.0	43.6	49.3	55.1	61.6	9.2	10.7	11.9	13.5	15.1	16.9
100	400	47.4	54.7	61.2	69.2	77.4	86.6	26.1	30.2	34.6	39.1	43.7	48.9
200	400	63.4	73.2	81.9	92.6	103.5	115.8	63.1	72.9	81.5	92.2	103.1	115.3
300	400	63.4	73.2	81.9	92.6	103.5	115.8	100.5	116.1	129.8	139.9	139.9	139.9

The full shear capacity can only be reached for slab thicknesses bigger than $1.5 \cdot c_1$

QwikFoot 120mm long - Single insert located near one edge Design capacity in combination with M20 G4.6 Bolts

			Tensile Ca	pacity kN					Shear Ca	pacity kN		
Single	Ca	pacity limi	ted by eith	er f _c · N _{Rk,}	c or f _s ⋅ N _R	k,s	Ca	pacity lim	ited by eith	er f _c · V _{Rk,}	c or fs · V _R	(,s
Edge Distance	(Concrete C	ompressiv	ve Strength	n f` _c - MPa		(Concrete C	ompressiv	ve Strength	n f` _c - MPa	
c ₁	15	20	25	32	40	50	15	20	25	32	40	50
50	21.6	25.0	27.9	31.6	35.3	39.5	4.7	5.5	6.1	6.9	7.7	8.6
75	25.1	29.0	32.4	36.7	41.1	45.9	8.7	10.0	11.2	12.7	14.2	15.9
100	28.9	33.4	37.3	42.2	47.2	52.7	13.4	15.5	17.3	19.6	21.9	24.5
125	32.9	38.0	42.4	48.0	53.7	60.0	18.7	21.6	24.2	27.3	30.6	34.2
150	37.1	42.8	47.9	54.2	60.6	67.7	24.6	28.4	31.8	35.9	40.2	44.9
175	41.5	48.0	53.6	60.7	67.8	75.8	31.0	35.8	40.0	45.3	48.6	48.6
200	43.7	50.5	56.4	63.8	71.4	76.4	37.9	43.7	48.6	48.6	48.6	48.6
225	43.7	50.5	56.4	63.8	71.4	76.4	45.2	48.6	48.6	48.6	48.6	48.6
250	43.7	50.5	56.4	63.8	71.4	76.4	48.6	48.6	48.6	48.6	48.6	48.6
275	43.7	50.5	56.4	63.8	71.4	76.4	48.6	48.6	48.6	48.6	48.6	48.6
300	43.7	50.5	56.4	63.8	71.4	76.4	48.6	48.6	48.6	48.6	48.6	48.6

The full shear capacity can only be reached for slab thicknesses bigger than $1.5 \cdot c_1$

QwikFoot 120mm long - Single insert located near two edges at right angles to each other

Design capacity in combination with M20 G4.6 Bolts

				Tensile Ca	pacity kN						Shear Ca	oacity kN		
Single	Second	Ca	pacity limi	ted by eith	er f _c • N _{Rk,}	c or f _s ⋅ N _{RI}	k,s	_	Ca	pacity limi	ted by eith	er f _c · V _{Rk,}	or f _s • V _{Rk}	i,s
Edge Distance	Edge Distance	(Concrete C	ompressiv	e Strength	n f` _c - MPa			(Concrete C	ompressiv	e Strength	i f` _c - MPa	
с ₁	c ₂	15	20	25	32	40	50		15	20	25	32	40	50
50	50	13.7	15.8	17.7	20.0	22.4	25.0		3.6	4.1	4.6	5.2	5.8	6.5
50	100	16.6	19.2	21.4	24.2	27.1	30.3		4.7	5.5	6.1	6.9	7.7	8.6
100	100	22.2	25.6	28.6	32.4	36.2	40.5		10.0	11.6	13.0	14.7	16.4	18.3
100	150	26.0	30.1	33.6	38.0	42.5	47.5		13.4	15.5	17.3	19.6	21.9	24.5
150	150	33.4	38.6	43.2	48.8	54.6	61.0		18.5	21.3	23.8	27.0	30.1	33.7
200	150	37.1	42.8	47.9	54.2	60.6	67.7		24.1	27.9	31.2	35.3	39.4	44.1
200	200	43.7	50.5	56.4	63.8	71.4	76.4		28.4	32.8	36.7	41.5	46.4	48.6
300	150	37.1	42.8	47.9	54.2	60.6	67.7		37.1	42.9	47.9	48.6	48.6	48.6
300	200	43.7	50.5	56.4	63.8	71.4	76.4		41.9	48.4	48.6	48.6	48.6	48.6
300	300	43.7	50.5	56.4	63.8	71.4	76.4		48.6	48.6	48.6	48.6	48.6	48.6
500	500	43.7	50.5	56.4	63.8	71.4	76.4		48.6	48.6	48.6	48.6	48.6	48.6

The full shear capacity can only be reached for slab thicknesses bigger than 1.5 \cdot c_1

QwikFoot 120mm long - Threaded Inserts located near one edge at various insert spacings

Design capacity in combination with M20 G4.6 Bolts

sooigii oupe				Donto									
			Concre for a	ete or Steel PAIR of Th	Tensile Ca readed Ins	apacity serts			Concr for a	ete or Stee PAIR of Th	I Shear Ca readed In	pacity J	
Single		Ca	apacity limi	ited by eith	er f _c · N _{Rk,}	c or f _s ⋅ N _{RI}	k,s		Capacity lim	ited by eith	er f _c · V _{Rk,}	c or fs · V _{Rk}	(,s
Edge Distance	Spacing		Concrete C	Compressiv	e Strength	n f` _c - MPa			Concrete C	Compressiv	ve Strength	n f` _c - MPa	
c ₁	s ₁	15	20	25	32	40	50	15	20	25	32	40	50
50	100	27.4	31.7	35.4	40.0	44.8	50.0	7.9	9.1	10.2	11.5	12.9	14.4
100	100	36.6	42.3	47.3	53.5	59.8	66.9	17.9	20.6	23.1	26.1	29.2	32.6
200	100	55.4	64.0	71.5	80.9	90.5	101.2	44.2	51.0	57.1	64.5	72.2	80.7
300	100	55.4	64.0	71.5	80.9	90.5	101.2	77.3	89.3	97.1	97.1	97.1	97.1
50	200	33.2	38.3	42.9	48.5	54.2	60.6	9.5	10.9	12.2	13.8	15.5	17.3
100	200	44.4	51.2	57.3	64.8	72.4	81.0	22.3	25.8	28.8	32.6	36.5	40.8
200	200	67.1	77.5	86.7	98.0	109.6	122.5	50.5	58.3	65.2	73.8	82.5	92.2
300	200	67.1	77.5	86.7	98.0	109.6	122.5	85.1	97.1	97.1	97.1	97.1	97.1
50	300	39.0	45.0	50.3	56.9	63.4	71.2	9.5	10.9	12.2	13.8	15.5	17.3
100	300	52.1	60.1	67.2	76.1	85.1	95.1	26.8	30.9	34.6	39.1	43.7	48.9
200	300	78.8	91.0	101.8	115.1	128.7	143.9	56.8	65.6	73.4	83.0	92.8	97.1
300	300	78.8	91.0	101.8	115.1	128.7	143.9	92.8	97.1	97.1	97.1	97.1	97.1
50	400	49.9	19.2	55.8	63.2	70.6	79.0	9.5	10.9	12.2	13.8	15.5	17.3
100	400	57.8	25.6	74.6	84.4	94.3	105.5	26.8	11.6	34.6	39.1	43.7	48.9
200	400	66.7	101.0	112.9	127.7	142.8	152.9	63.1	72.9	81.5	92.2	97.1	97.1
300	400	87.4	101.0	112.9	127.7	142.8	152.9	97.1	97.1	97.1	97.1	97.1	97.1

QwikFix Round Insert Design for Structural Fixings

The following values are based on the CCD method as described in AS 3850.1:2015. Minimum Edge Distance, min $c_1 = 1.5 h_{ef}$

Minimum edge distance c₁ and insert

Minimum edge distance c_1 and insert spacing s_1 to reach full concrete cone capacity

Insert Length (mm)	76	96
min c ₁ (mm)	105	135
min s ₁ (mm)	205	270

Cone breakout (tension) capacity ($\phi_c N_b$) of a QwikFix insert located with minimum edge distance and insert spacing; kN

		Concrete	Compressi	ve Strength	n f` _c - MPa	
Part Code	15	20	25	32	40	50
FER1676, FER2076	18.0	20.8	23.3	26.3	29.5	32.9
FER1296, FER1696, FER2096	26.4	30.5	34.1	38.6	43.1	48.2

Note: QwikFix inserts require an H12x300 long crossbar which has a maximum shear capacity 37.9kN.

Design Method

How to use the tables

- Determine the factored load and required capacities in accordance with NZS 3101
- Determine the design compressive strength of the concrete.
- Check the edge distance and spacing of the insert. If the edge distances and insert spacing exceed the minimum, check the concrete breakout (tension) capacity in the table above
- Choose the size and grade of bolt to be used and its steel capacity from the table above
- If the insert is closer to one or more edges or to another insert, refer to the following tables for insert capacity.

QwikFix 76mm long - Single insert located near one edge

QwikFix 76r	nm long -	Single in	sert locat	ed near o	one edge							-
Design capa	city in com	bination w	ith G4.6 B	olts: M16 I	Purple, M2	20 Red						
			Tensile Ca	pacity kN					Shear Ca	pacity kN		
Single		Capacity li	mited by e	ither f _c · N _c	b or f _s ⋅ N _s			Capacity li	mited by e	ither f _c · V	b or fs · Vs	
Edge Distance	(Concrete C	ompressiv	ve Strength	n f` _c - MPa		(Concrete C	ompressiv	ve Strength	n f` _c - MPa	
C ₁	15	20	25	32	40	50	15	20	25	32	40	50
50	11.3	13.0	14.6	16.5	18.5	20.6	4.7	5.5	6.1	6.9	7.7	8.6
75	14.3	16.5	18.4	20.8	23.3	26.0	8.7	10.0	11.2	12.7	14.2	15.9
100	17.6	20.3	22.7	25.6	28.7	32.0	13.4	15.5	17.3	19.6	21.9	24.5
125	18.0	20.8	23.3	26.3	29.5	32.9	18.7	21.6	24.2	27.3	30.6	34.2
150	18.0	20.8	23.3	26.3	29.5	32.9	24.6	28.4	31.8	35.9	40.2	44.9
175	18.0	20.8	23.3	26.3	29.5	32.9	31.0	35.8	40.0	45.3	48.6	48.6
200	18.0	20.8	23.3	26.3	29.5	32.9	36.1	41.7	46.6	48.6	48.6	48.6
225	18.0	20.8	23.3	26.3	29.5	32.9	36.1	41.7	46.6	48.6	48.6	48.6
250	18.0	20.8	23.3	26.3	29.5	32.9	36.1	41.7	46.6	48.6	48.6	48.6
275	18.0	20.8	23.3	26.3	29.5	32.9	36.1	41.7	46.6	48.6	48.6	48.6
300	18.0	20.8	23.3	26.3	29.5	32.9	36.1	41.7	46.6	48.6	48.6	48.6
400	18.0	20.8	23.3	26.3	29.5	32.9	36.1	41.7	46.6	48.6	48.6	48.6

The full shear capacity can only be reached for slab thicknesses bigger than $1.5 \cdot c_1$

QwikFix 76mm long - Single insert located near two edges at right angles to each other

Design capacity in combination with G4.6 Bolts: M16 Purple, M20 Red **Tensile Capacity kN** Shear Capacity kN First Second Capacity limited by either $\mathsf{f}_{c}\cdot \mathsf{N}_{cb}$ or $\mathsf{f}_{s}\cdot \mathsf{N}_{s}$ Capacity limited by either $\mathsf{f}_{c}\cdot \mathbf{V}_{cb}$ or $\mathsf{f}_{s}\cdot \mathbf{V}_{s}$ Edge Edge Concrete Compressive Strength f `c - MPa Concrete Compressive Strength f `c - MPa Distance Distance 15 20 25 32 40 50 15 20 25 32 40 50 C₁ C₂ 50 50 8.4 9.7 10.8 12.2 13.7 15.3 3.6 4.1 4.6 5.2 5.8 6.5 50 100 11.1 12.8 14.3 16.2 18.1 20.3 4.7 5.5 6.1 6.9 7.7 8.6 100 17.3 19.9 25.2 28.2 31.5 11.6 14.7 16.4 18.3 100 15.5 17.3 100 150 17.6 20.3 22.7 25.6 28.7 13.4 21.9 24.5 150 150 18.0 20.8 26.3 29.5 32.9 18.5 21.3 23.8 30.1 33.7 150 18.0 20.8 26.3 29.5 32.9 24.1 27.9 31.2 35.3 39.4 44.1 200 32.9 18.0 20.8 26.3 29.5 28.4 36.7 41.5 46.4 48.6 200 200 32.8 32.9 300 100 18.0 20.8 26.3 29.5 36.1 41.7 46.6 48.6 48.6 48.6 18.0 32.9 46.6 300 200 20.8 26.3 29.5 41.7 48.6 48.6 36.1 48.6 300 300 18.0 20.8 23.3 26.3 29.5 32.9 36.1 41.7 46.6 48.6 48.6 48.6 300 300 18.0 29.5 32.9 20.8 26.3 36.1 41.7 46.6 48.6 48.6 48.6

The full shear capacity can only be reached for slab thicknesses bigger than $1.5 \cdot c_1$

A Group of TWO QwikFix 76 mm long - Threaded Inserts located near one edge at various insert spacings Design capacity in combination with G4.6 Bolts: M16 Purple, M20 Red

		Те	nsile Capa	city for a P	AIR of Thre	eaded Inse	Shear Capacity for a PAIR of Threaded Inserts								
Single			Capacity li	mited by e	ither f _c · N _c	_{cb} or f _s · N _s		Capacity limited by either $f_c \cdot V_{cb}$ or $f_s \cdot V_s$ Concrete Compressive Strength f c - MPa							
Edge Distance	Spacing		Concrete C	Compressiv	ve Strength	h f` _c - MPa									
C ₁	s ₁	15	20	25	32	40	50	15	20	25	32	40			
50	100	16.8	19.4	21.6	24.5	27.4	30.6	7.9	9.1	10.2	11.5	12.9			
100	100	26.0	30.1	33.6	38.0	42.5	47.5	17.9	20.6	23.1	26.1	29.2			
200	100	26.7	30.9	34.5	39.1	43.7	48.8	44.2	51.0	57.1	64.5	72.2			
300	100	29.7	30.9	34.5	39.1	43.7	48.8	53.5	61.8	96.1	78.1	87.4			
50	200	22.2	25.7	28.7	32.8	36.6	40.6	9.5	10.9	12.2	13.8	15.5			
100	200	34.5	39.8	44.6	50.4	56.4	63.0	22.3	25.8	28.8	32.6	36.5			
200	200	35.5	40.9	45.8	51.8	57.9	64.7	50.5	58.3	65.2	73.8	82.5			
300	200	35.5	40.9	45.8	51.8	57.9	64.7	70.9	81.9	91.9	97.1	97.1			
50	300	22.6	26.1	29.2	33.0	36.9	41.3	9.5	10.9	12.2	13.8	15.5			
100	300	35.1	40.5	45.3	51.3	57.3	64.1	26.8	30.9	34.6	39.1	47.3			
200	300	36.1	41.7	46.6	52.7	58.9	65.9	56.8	65.6	73.4	83.0	92.8			
300	300	36.1	41.7	46.6	52.7	58.9	65.9	72.1	83.3	93.1	97.1	97.1			
50	400	22.6	26.1	29.2	33.0	36.9	41.3	9.5	10.9	12.2	13.8	15.5			
100	400	35.1	40.5	45.3	51.3	57.3	64.1	26.8	30.9	34.6	39.1	43.7			
200	400	36.1	41.7	46.6	52.7	58.9	65.9	63.1	72.9	81.5	92.2	97.1			
300	400	36.1	41 7	46.6	52 7	58.9	65.9	72.1	83.3	93.1	97 1	97 1			

 $f_{c} \cdot V_{cb} \text{ or } f_{s} \cdot V_{s}$ trength f`_c - MPa 40 50 32 1.5 12.9 14.4 26.1 32.6 4.5 80.7 97.1 87.4 3.8 2.6 10.8 36.5 3.8 92.2 97.1 97.1 3.8 17.3 9.1 47.3 48.9 92.8 97.1 97.1 97.1 3.8 15.5 17.3 9.1 48.9 43.7

The full shear capacity can only be reached for slab thicknesses bigger than 1.5 \cdot c_1

Ancon

97.1

97.1

27

97.1

QwikFix 96mm long - Single insert located near one edge

OwikEix 96r	nm long -	Single in	sert locat	ed near o	ne edge							
Design capad	citv in com	bination wi	ith G4.6 B	olts: M12	Green. M1	6 Purple.	120 Red					
5 5 5 7 7 7			Tensile Ca	pacity kN	,	1 7			Shear Ca	pacity kN		
Single		Capacity li	mited by e	ither f _c · N _c	_{cb} or f _s ⋅ N _s			Capacity li	mited by e	ither f _c · V _c	b or fs · Vs	
Edge Distance	stance Concrete Compressive Strengt				n f` _c - MPa		(Concrete C	ompressiv	ve Strength	n f` _c - MPa	
C ₁	15	20	25	32	40	50	15	20	25	32	40	50
50	14.8	17.0	19.0	21.5	24.1	26.9	4.7	5.5	6.1	6.9	7.7	8.6
75	17.9	20.7	23.1	26.2	29.3	32.7	8.7	10.0	11.2	12.7	14.2	15.9
100	21.4	24.7	27.6	31.2	34.9	39.0	13.4	15.5	17.3	19.6	21.9	24.5
125	25.1	29.0	32.4	36.6	41.0	45.8	18.7	21.6	24.2	27.3	30.6	34.2
150	26.4	30.5	34.1	38.6	43.1	48.2	24.6	28.4	31.8	35.9	40.2	44.9
175	26.4	30.5	34.1	38.6	43.1	48.2	31.0	35.8	40.0	48.6	48.6	48.6
200	26.4	30.5	34.1	38.6	43.1	48.2	37.9	43.7	48.6	48.6	48.6	48.6
225	26.4	30.5	34.1	38.6	43.1	48.2	45.2	48.6	48.6	48.6	48.6	48.6
250	26.4	30.5	34.1	38.6	43.1	48.2	48.6	48.6	48.6	48.6	48.6	48.6
275	26.4	30.5	34.1	38.6	43.1	48.2	48.6	48.6	48.6	48.6	48.6	48.6
300	26.4	30.5	34.1	38.6	43.1	48.2	48.6	48.6	48.6	48.6	48.6	48.6

The full shear capacity can only be reached for slab thicknesses bigger than $1.5 \cdot c_1$

QwikFix 96mm long - Single insert located near two edges at right angles to each other

Design capacity in combination with G4.6 Bolts: M12 Green, M16 Purple, M20 Red

				Tensile Ca	pacity kN				Shear Capacity kN						
First	Second		Capacity li	mited by ei	ther f _c · N _c	b or fs · Ns		Capacity limited by either $f_c \cdot V_{cb}$ or $f_s \cdot V_s$							
Edge Distance	Edge Distance		Concrete C	ompressiv	e Strength	i f` _c - MPa			Concrete	Compressiv	ve Strengtl	n f` _c - MPa	l		
с ₁	c ₂	15	20	25	32	40	50	15	20	25	32	40	50		
50	50	10.1	11.7	13.1	14.8	16.6	18.5	3.6	4.1	4.6	5.2	5.8	6.5		
50	100	12.9	14.9	16.7	18.8	21.1	23.6	4.7	5.5	6.1	6.9	7.7	8.6		
100	100	18.7	21.6	24.1	27.3	30.5	34.1	10.0) 11.6	13.0	14.7	16.4	18.3		
100	150	21.4	24.7	27.6	31.2	34.9	39.0	13.4	15.5	17.3	19.6	21.9	24.5		
150	150	26.4	30.5	34.1	38.6	43.1	48.2	18.5	5 21.3	23.8	27.0	30.1	33.7		
200	150	26.4	30.5	34.1	38.6	43.1	48.2	24.1	27.9	31.2	35.3	39.4	44.1		
200	200	26.4	30.5	34.1	38.6	43.1	48.2	28.4	32.8	36.7	41.5	46.4	48.6		
300	100	26.4	30.5	34.1	38.6	43.1	48.2	37.1	42.9	47.9	48.6	48.6	48.6		
300	200	26.4	30.5	34.1	38.6	43.1	48.2	41.9	48.4	48.6	48.6	48.6	48.6		
300	300	26.4	30.5	34.1	38.6	43.1	48.2	48.6	6 48.6	48.6	48.6	48.6	48.6		

The full shear capacity can only be reached for slab thicknesses bigger than $1.5 \cdot c_1$

A Group of TWO QwikFix 96mm long - Threaded Inserts located near one edge at various insert spacings

Tensile Capacity for a PAIR of Threaded Inserts

Design capacity in combination with G4.6 Bolts: M12 Green, M16 Purple, M20 Red

32

11.5

26.1

64.5

97.1

13.8

32.6

73.8

97.1

13.8

39.1

83.0

97.1

13.8

39.1

92.2

97.1

40

12.9

29.2

72.2

97.1

36.5

82.5

97.1

15.5

43.7

92.8

97.1

15.5

43.7

97.1

97.1

50

14.4

32.6

80.7

97.1

17.3

40.8

92.2

97.1

17.3

48.9

97.1

97.1

17.3

48.9

97.1

97.1

Concrete Compressive Strength f `c - MPa

25

10.2

57.1

93.8

12.2

28.8

65.2

97.1

12.2

34.6

73.4

97.1

12.2

34.6

81.5

97.1

20

9.1

20.6

51.0

83.9

10.9

25.8

58.3

97.

10.9

30.9

65.6

97.1

10.9

30.9

72.9

97.1

Single		Capacity limited by either f . N . or f . N										
Edge				inited by e		b or is ins						
Distance	Spacing		Concrete C	Compressiv	ve Strength	n f` _c - MPa						
c ₁	s ₁	15	20	25	32	40	50	15				
50	100	20.3	23.4	26.2	29.6	33.1	37.0	7.9				
100	100	29.4	33.9	37.9	42.9	48.0	53.6	17.9				
200	100	36.3	41.9	46.9	53.0	43.7	66.3	44.2				
300	100	36.3	41.9	46.9	53.0	43.7	66.3	72.6				
50	200	12.9	29.8	33.3	37.7	42.1	47.1	4.7				
100	200	37.4	43.2	48.2	54.6	61.0	68.2	22.3				
200	200	46.2	53.4	59.7	67.5	75.5	84.4	50.5				
300	200	46.2	53.4	59.7	73.8	75.5	84.4	85.1				
50	300	29.5	34.1	38.1	43.1	48.2	53.9	9.5				
100	300	42.7	49.3	55.2	62.4	69.8	78.0	26.8				
200	300	52.8	61.0	68.2	77.2	86.3	96.5	56.8				
300	300	52.8	61.0	68.2	77.2	86.3	96.5	92.8				
50	400	29.5	34.1	38.1	43.1	48.2	53.9	9.5				
100	400	42.7	49.3	55.2	62.4	69.8	78.0	26.8				
200	400	52.8	61.0	68.2	77.2	86.3	96.5	63.1				
300	400	52.8	61.0	68.2	77.2	86.3	96.5	97.1				

The full shear capacity can only be reached for slab thicknesses bigger than $1.5 \cdot c_1$

Working Load Limit (WLL) Design of Brace and Strongback Inserts in accordance with Good Practice Guidelines - Safe work with precast concrete:2018 (GPG2018)

Inserts which are used to fasten braces and strongbacks for the erection of precast concrete elements are designed with working load limits which are determined by dividing the characteristic strength of either the steel or the concrete by a factor of safety (FoS) of 2.5.

Steel WLL

Concrete WLL

method.

The following table provides the WLL for Unicoil 16 and M20 G4.6 bolts

AS 3850.1 Working Load Limit

AS 3850.1	Working Load Lim	it	Minimum Edge Distance, min $c_1 = 1.5$						
Bolt	WLL Tension Grade 4.6	WLL Shear	Minimum edge and spacing						
UC16	38.9	24.1	Insert Type	FF2096/	FER20				
M20	39.1	24.3	min c ₁	155	135				
			1						

Minimum edge	Minimum edge and spacing											
Insert Type	FF2096/ UCQF1696	FER2096/ FERB3496Z										
min c ₁	155	135										
min s ₁	305	270										

The characteristic strengths for tension N_{cb} and

shear $V_{\rm cb}$ are determined by the CCD design

WLL of a QwikFoot insert located with minimum edge and insert spacing

FF2096 and UCQF1696 Bracing Ferrule

Concret	Concrete Compressive Strength f `c - MPa										
15	20	25	32								
	WLL - kN:	N _{cb} / 2.5									
19.5	22.5	25.2	28.5								

WLL of a QwikFix round insert fitted with a H12 Crossbar 300mm long located with minimum edge and insert spacing

FER2096 and FERB3496Z Bracing Ferrule

Concrete	Concrete Compressive Strength f `c - MPa										
15 20 25 32											
	WLL - kN: N _{cb} / 2.5										
16.3	18.8	21.0	23.7								

Note: QwikFix inserts require an H12x300 long crossbar which has a maximum WLL limited by shear of 38kN.

Ancon Threaded Inserts are not designed to be used as lifting points. Please contact our Technical Team on technical.nz@leviat.com to learn more about compliant lifting solutions to suit your application.

WLL of inserts located close to edges or close to each other

The following design tables provide working loads limited either by the WLL of the Bolts (steel) or concrete breakout whichever is the minimum.

There are three cases considered:

- close to one edge
- · close to two edges at right angles to each other
- a group of two inserts at close spacings (it is assumed the load is distributed equally between inserts)

For more complicated configurations please refer either to GPG2018 or contact us.

In each table, the loads are limited by either the concrete or the steel WLL and colour coded to show the load range for each bolt type (Unicoil 16 & M20 G4.6).

Design Method

How to use the tables

- Determine the factored load and required capacities in accordance with NZS 1170 .
- Determine the compressive strength of the concrete at the time of loading.
- Check the edge distance and spacing of the insert. If the edge distances and insert spacing exceed the minimum, check the Concrete WLL in the table above.
- Choose the type of bolt to be used, either Unicoil 16 or G4.6 and it's WLL from the table above.
- If the insert is closer to one or more edges or to another insert, refer to the following tables for insert capacity.

Example 1

A QwikFoot insert is required to fix a wind brace with an applied load of 20kN in tension in a footing which is designed to provide f_{cm} = 20MPa at the time of erection and where the closest edge distance is 300mm.

The applied load is less than the WLL of either the UCQF1696 in combination with a Unicoil bolt (38.9 kN) or FF2096 in combination with a M20 bolt (39.1kN) so either may be used.

The edge distance is greater than the minimum edge distance required to reach the full concrete cone capacity (160 mm). The WLL at 20MPa is 22.5kN (see table on page 29) so design OK.

Note: A QwikFix insert has a lower WLL (18.8kN at 20MPa) and could only be used if the concrete strength exceeded 25MPa.

Example 2

A QwikFoot insert is located at an edge distance 125mm from one edge. Refer to the first table on page 31.

The capacity in the table at 20MPa is 19.5kN, i.e. not sufficient.

A concrete strength of 25MPa is required. If the concrete strength can be increased either a Unicoil16 (purple) or M20 G4.6bolt (red) is OK.

Example 3

An insert is to be located 200mm from two adjacent edges at right angles with an applied load of 34kN. Refer to the second table on page 31.

The minimum required concrete strength to develop a WLL of at least 30kN is 40MPa (WLL=31.9kN). Use a Unicoil insert and bolt with a WLL of 38.9kN or an M20 G4.6 (red).

QwikFoot 96mm long - Single insert located near one edge Working Load Limit of Unicoil Bolts Purple, G4.6 M20 Red

		WLL in Tension kN											
Single	WLL limited by either $\rm N_{cb}$ / 2.5 or $\rm N_{s}$ / 2.5												
Edge Distance	Concrete Compressive Strength f `c - MPa												
с ₁	15 20 25 32 40 50												
50	10.4	12.0	13.4	15.2	17.0	19.0							
75	12.4	14.3	16.0	18.1	20.3	22.7							
100	14.6	16.8	18.8	21.3	23.8	26.6							
125	16.9	19.5	21.9	24.7	27.6	30.9							
150	19.4	22.4	25.1	28.4	31.7	35.5							
175	19.5	22.5	25.2	28.5	31.9	35.6							
200	19.5	22.5	25.2	28.5	31.9	35.6							
225	19.5	22.5	25.2	28.5	31.9	35.6							
250	19.5	22.5	25.2	28.5	31.9	35.6							
275	19.5	22.5	25.2	28.5	31.9	35.6							
300	19.5	22.5	25.2	28.5	31.9	35.6							

	WLL in Shear kN												
WLL limited by either V _{cb} / 2.5 or V _s / 2.5													
Concrete Compressive Strength f `c - MPa													
15	15 20 25 32 40 50												
2.9	3.4	3.8	4.3	4.8	5.3								
5.4	6.2	6.9	7.8	8.7	9.8								
8.2	9.5	10.6	12.0	13.5	15.0								
11.5	13.3	14.9	16.8	18.8	21.0								
15.1	17.5	19.5	22.1	24.3	24.3								
19.1	22.0	24.3	24.3	24.3	24.3								
23.3	24.3	24.3	24.3	24.3	24.3								
24.3	24.3	24.3	24.3	24.3	24.3								
24.3	24.3	24.3	24.3	24.3	24.3								
24.3	24.3	24.3	24.3	24.3	24.3								
24.3	24.3	24.3	24.3	24.3	24.3								

The full shear capacity can only be reached for slab thicknesses bigger than 1.5 \cdot c_1

QwikFix 96mm long - Single insert located near two edges at right angles to each other

Working Load Limit of Unicoil Bolts Purple, G4.6 M20 Red

			WLL in Tension kN							WLL in Shear kN							
First	Second		WLL limite	ed by either	[•] N _{cb} / 2.5 d	or N _s / 2.5				WLL limited by either V_{cb} / 2.5 or V_s / 2.5							
Edge Distance	Edge Distance	(Concrete C	ompressiv	e Strength	f` _c - MPa		Concrete Compressive Strength f `c - MPa									
c ₁	c ₁ c ₂		20	25	32	40	50	1	5	20	25	32	40	50			
50	50	6.9	8.0	8.9	10.1	11.3	12.6	2	.2	2.5	2.8	3.2	3.6	4.0			
50	100	8.6	10.0	11.2	12.6	14.1	15.8	2	.9	3.4	3.8	4.3	4.8	5.3			
100	100	12.1	14.0	15.7	17.7	19.8	22.1	6	.2	7.1	8.0	9.0	10.1	11.3			
100	150	14.6	16.8	18.8	21.3	23.8	26.6	8	.2	9.5	10.6	12.0	13.5	15.0			
150	150	19.4	22.4	25.0	28.3	31.8	35.4	11	.4	13.1	14.7	16.6	18.5	20.7			
200	150	19.4	22.4	25.1	28.4	31.7	35.5	14	.9	17.2	19.2	21.7	24.3	24.3			
200	200	19.5	22.5	25.2	28.5	31.9	35.6	17	'.5	20.2	22.6	24.3	24.3	24.3			
300	150	19.4	22.4	25.1	28.4	31.7	35.5	22	2.8	24.3	24.3	24.3	24.3	24.3			
300	200	19.5	22.5	25.2	28.5	31.9	35.6	24	.3	24.3	24.3	24.3	24.3	24.3			

The full shear capacity can only be reached for slab thicknesses bigger than $1.5 \cdot c_1$

A Group of TWO QwikFoot 96mm long - Threaded Inserts located near one edge at various insert spacings

Working Load Limit of Unicoil Bolts Purple, G4.6 M20 Red

		W	LL in Tensi	on for a PA	AIR of Thre	aded Inser	ts	WLL in Shear for a PAIR of Threaded Inserts							
Single			WLL limite	ed by eithe	r N _{cb} / 2.5 (or N _s / 2.5		 	WLL limite	ed by eithe	r V _{cb} / 2.5	or V _s / 2.5			
Edge Distance	Spacing	(Concrete C	Compressiv	ve Strength	n f` _c - MPa		 Concrete Compressive Strength f `c - MPa							
с ₁	s ₁	15	20	25	32	40	50	 15	20	25	32	40	50		
50	100	13.8	16.0	17.9	20.2	22.6	25.3	4.9	5.6	6.3	7.1	7.9	8.9		
100	100	19.4	22.4	25.1	28.4	31.7	35.5	11.0	12.7	14.2	16.1	17.9	20.1		
200	100	26.0	30.0	33.5	37.9	42.4	47.4	27.2	31.4	35.1	39.7	44.4	48.6		
300	100	26.0	30.0	33.5	37.9	42.4	47.4	47.6	48.6	48.6	48.6	48.6	48.6		
50	200	17.3	19.9	22.3	25.2	28.2	31.5	5.8	6.7	7.5	8.5	9.5	10.6		
100	200	24.3	28.0	31.3	35.4	39.6	44.3	13.7	15.9	17.7	20.1	22.4	25.1		
200	200	32.5	37.5	41.9	47.4	53.0	59.2	31.1	35.9	40.1	45.4	48.6	48.6		
300	200	32.5	37.5	41.9	47.4	53.0	59.2	48.6	48.6	48.6	48.6	48.6	48.6		
50	300	20.7	23.9	26.8	30.3	33.8	37.8	5.8	6.7	7.5	8.5	9.5	10.6		
100	300	29.1	33.6	37.6	42.5	47.5	53.1	16.5	19.0	21.3	24.1	26.9	30.1		
200	300	38.9	44.9	50.3	56.9	63.9	71.1	35.0	40.4	45.1	48.6	48.6	48.6		
300	300	38.9	44.9	50.3	56.9	63.9	71.1	48.6	48.6	48.6	48.6	48.6	48.6		
50	400	20.8	24.0	26.8	30.3	33.9	37.9	5.8	6.7	7.5	8.5	9.5	10.6		
100	400	29.2	33.7	37.7	42.6	47.6	53.3	16.5	19.0	21.3	24.1	26.9	30.1		
200	400	39.0	45.1	50.4	57.0	63.7	71.2	38.9	44.9	48.6	48.6	48.6	48.6		
300	400	39.0	45.1	50.4	57.0	63.7	71.2	48.6	48.6	48.6	48.6	48.6	48.6		

The full shear capacity can only be reached for slab thicknesses bigger than $1.5\cdot c_1$

QwikFix 96mm long - Single insert located near one edge

VUINING LUA	d Limit of L	Jnicoil Bolt	s Purple, (G4.6 M20	Red									
0	WLL in Tension kN						WLL in Shear kN							
Single		WLL limite	d by either	r N _{cb} / 2.5	or N _s / 2.5	WLL limited by either V _{cb} / 2.5 or V _s / 2.5 Concrete Compressive Strength f` _c - MPa								
Edge Distance	(Concrete C	ompressiv	e Strength	n f` _c - MPa									
с ₁	15	20	25	32	40	50	15	20	25	32	40	50		
50	9.1	10.5	11.7	13.3	14.8	16.6	2.9	3.4	3.8	4.3	4.8	5.3		
75	11.0	12.7	14.2	16.1	18.0	20.1	5.4	6.2	6.9	7.8	8.7	9.8		
100	13.1	15.2	17.0	19.2	21.5	24.0	8.2	9.5	10.6	12.0	13.5	15.0		
125	15.4	17.8	19.9	22.6	25.2	28.2	11.5	13.3	14.9	16.8	18.8	21.0		
150	16.3	18.8	21.0	23.7	26.6	29.7	15.1	17.5	19.5	22.1	24.3	24.3		
175	16.3	18.8	21.0	23.7	26.6	29.7	16.1	22.0	24.3	24.3	24.3	24.3		
200	16.3	18.8	21.0	23.7	26.6	29.7	23.3	24.3	24.3	24.3	24.3	24.3		
225	16.3	18.8	21.0	23.7	26.6	29.7	24.3	24.3	24.3	24.3	24.3	24.3		
250	16.3	18.8	21.0	23.7	26.6	29.7	24.3	24.3	24.3	24.3	24.3	24.3		
275	16.3	18.8	21.0	23.7	26.6	29.7	24.3	24.3	24.3	24.3	24.3	24.3		
300	16.3	18.8	21.0	23.7	26.6	29.7	24.3	24.3	24.3	24.3	24.3	24.3		

The full shear capacity can only be reached for slab thicknesses bigger than 1.5 \cdot c_1

QwikFix 96mm long - Single insert located near two edges at right angles to each other

Working Load Limit of Unicoil Bolts Purple, G4.6 M20 Red

		WLL in Tension kN							WLL in Shear kN						
First Edge Distance ^c 1	Second Edge Distance c ₂		WLL limite	ed by eithe	r N _{cb} / 2.5	or N _s / 2.5		WLL limited by either V _{cb} / 2.5 or V _s / 2.5 Concrete Compressive Strength f `c - MPa							
			Concrete C	Compressiv	ve Strength	n f` _c - MPa	_								
		15	20	25	32	40	50		15	20	25	32	40	50	
50	50	6.2	7.2	8.1	9.1	10.2	11.4		2.2	2.5	2.8	3.2	3.6	4.0	
50	100	7.9	9.2	10.2	11.6	13.0	14.5		2.9	3.4	3.8	4.3	4.8	5.3	
100	100	11.5	13.3	14.8	16.8	18.8	21.0		6.2	7.1	8.0	9.0	10.1	11.3	
100	150	13.1	15.2	17.0	19.2	21.5	24.0		8.2	9.5	10.6	12.0	13.5	15.0	
150	150	16.3	18.8	21.0	23.7	26.6	29.7		11.4	13.1	14.7	16.6	18.5	20.7	
200	150	16.3	18.8	21.0	23.7	26.6	29.7		14.9	17.2	19.2	21.7	24.3	24.3	
200	200	16.3	18.8	21.0	23.7	26.6	29.7		17.5	20.2	24.3	24.3	24.3	24.3	
300	100	16.3	18.8	21.0	23.7	26.6	29.7		22.8	24.3	24.3	24.3	24.3	24.3	
300	200	16.3	18.8	21.0	23.7	26.6	29.7		24.3	24.3	24.3	24.3	24.3	24.3	
300	300	16.3	18.8	21.0	23.7	26.6	29.7		24.3	24.3	24.3	24.3	24.3	24.3	
								-							

The full shear capacity can only be reached for slab thicknesses bigger than $1.5 \cdot c_1$

A Group of TWO QwikFix 96mm long - Threaded Inserts located near one edge at various insert spacings

Working Load Limit of Unicoil Bolts Purple, G4.6 M20 Red

WLL in Shear for a PAIR of Threaded Inserts

50 8.9

20.1

46.8

48.6

10.6 25.1

46.8

48.6

10.6

30.1

46.8

48.6

10.6 30.1

46.8

46.8

		W	LL in Tensi	on for a PA	AIR of Thre	aded Inser	WLL in Shear for a PAIR of Threaded Insert						
Single	Spacing		WLL limite	ed by eithe	r N _{cb} / 2.5	or N _s / 2.5	WLL limited by either V _{cb} / 2.5 or V _s / 2.5 Concrete Compressive Strength f` _c - MPa						
Edge Distance			Concrete C	Compressiv	ve Strength	n f` _c - MPa							
c ₁	s ₁	15	20	25	32	40	50	15	20	25	32	40	
50	100	12.5	14.4	16.1	18.2	20.4	22.8	4.9	5.9	6.3	7.1	7.9	
100	100	18.1	20.9	23.3	26.4	29.5	33.0	11.0	12.7	14.2	16.1	17.9	
200	100	22.3	25.8	28.9	32.6	36.5	40.8	27.2	31.4	35.1	39.7	44.4	
300	100	22.3	25.8	28.9	32.6	36.5	40.8	44.7	48.6	48.6	48.6	48.6	
50	200	15.9	18.3	20.5	23.2	36.5	29.0	5.8	6.7	7.5	8.5	9.5	
100	200	23.0	26.6	29.7	33.6	37.6	42.0	13.7	15.9	17.7	20.1	22.4	
200	200	28.4	32.8	36.7	41.5	46.4	51.9	31.1	35.9	40.1	45.4	46.8	
300	200	28.4	32.8	36.7	41.5	46.4	51.9	48.6	48.6	48.6	48.6	48.6	
50	300	18.2	21.0	23.4	26.5	29.6	33.1	5.8	6.7	7.5	8.5	9.5	
100	300	26.3	30.4	34.0	38.4	42.9	48.0	16.5	19.0	21.3	24.1	26.9	
200	300	32.5	37.5	42.0	47.5	53.1	59.4	35.0	40.4	45.1	46.8	46.8	
300	300	32.5	37.5	42.0	47.5	53.1	59.4	48.6	48.6	48.6	48.6	48.6	
50	400	18.2	21.0	23.4	26.5	29.6	33.1	5.8	6.7	7.5	8.5	9.5	
100	400	26.3	30.4	34.0	38.4	42.9	48.0	16.5	19.0	21.3	24.1	26.9	
200	400	32.5	37.5	42.0	47.5	53.1	59.4	38.9	44.9	46.8	46.8	46.8	
300	400	32.5	37.5	42.0	47.5	53.1	59.4	46.8	46.8	46.8	46.8	46.8	

The full shear capacity can only be reached for slab thicknesses bigger than $1.5 \cdot c_1$

Additional Design Requirements for Earthquake Effects

Clause 17.6 of NZS 3101:2006 - Amendment 3 specifies additional requirements for anchors designed for earthquake effects:

- Threaded inserts shall be designed to accommodate relative seismic movements by separation
- The strengths of the threaded insert are greater than the actions associated with ductile yielding
 of the attachment
- Threaded inserts shall be designed to remain elastic
- Threaded inserts shall be designed to accommodate the expected actions and deformations in a ductile manner.

Ancon Threaded Inserts can be used in conjunction with reinforcement bars to prevent brittle failure of the connection point. In case hanger bars are used, the tension capacity of insert is limited to minimum of:

- tension capacity of bolt
- tension capacity of threaded insert
- shear capacity of the hanger bar in the two cross sections where the loads are introduced
- capacity of the development of the reinforcement bar

The tables on page 5 and 7 specify the diameter of the hanger bars that fit into QwikFoot and QwikFix Threaded Inserts.

Worldwide contacts for Leviat:

Australia

Leviat 98 Kurrajong Avenue, Mount Druitt Sydney, NSW 2770 Tel: +61 - 2 8808 3100 Email: info.au@leviat.com

Austria

Leviat Leonard-Bernstein-Str. 10 Saturn Tower, 1220 Wien Tel: +43 - 1 - 259 6770 Email: info.at@leviat.com

Belgium

Leviat Industrielaan 2 1740 Ternat Tel: +32 - 2 - 582 29 45 Email: info.be@leviat.com

China Leviat

Room 601 Tower D, Vantone Centre No. A6 Chao Yang Men Wai Street Chaoyang District Beijing · P.R. China 100020 Tel: +86 - 10 5907 3200 Email: info.cn@leviat.com

Czech Republic Leviat Business Center Šafránkova Šafránkova 1238/1 155 00 Praha 5 Tel: +420 - 311 - 690 060 Email: info.cz@leviat.com

Finland Leviat Vädursgatan 5 412 50 Göteborg / Sweden Tel: +358 (0)10 6338781 Email: info.fi@leviat.com

France

Leviat 6, Rue de Cabanis FR 31240 L'Union Toulouse Tel: +33 - 5 - 34 25 54 82 Email: info.fr@leviat.com

Germany Leviat Liebigstrasse 14

Liebigstrasse 14 40764 Langenfeld Tel: +49 - 2173 - 970 - 0 Email: info.de@leviat.com

India

Leviat 309, 3rd Floor, Orion Business Park Ghodbunder Road, Kapurbawdi, Thane West, Thane, Maharashtra 400607 Tel: +91 - 22 2589 2032 Email: info.in@leviat.com

Italy

Leviat Via F.IIi Bronzetti 28 24124 Bergamo Tel: +39 - 035 - 0760711 Email: info.it@leviat.com

Malaysia

Leviat 28 Jalan Anggerik Mokara 31/59 Kota Kemuning, 40460 Shah Alam Selangor Tel: +603 - 5122 4182 Email: info.my@leviat.com

Netherlands Leviat Oostermaat 3 7623 CS Borne Tel: +31 - 74 - 267 14 49 Email: info.nl@leviat.com

New Zealand

Leviat 2/19 Nuttall Drive, Hillsborough, Christchurch 8022 Tel: +64 - 3 376 5205 Email: info.nz@leviat.com

Norway

Leviat Vestre Svanholmen 5 4313 Sandnes Tel: +47 - 51 82 34 00 Email: info.no@leviat.com

Philippines Leviat 2933 Regus, Joy Nostalg, ADB Avenue Ortigas Center Pasig City Tel: +63 - 2 7957 6381 Email: info.ph@leviat.com

Poland Leviat UI. Obornicka 287 60-691 Poznan Tel: +48 - 61 - 622 14 14 Email: info.pl@leviat.com

Singapore Leviat 14 Benoi Crescent Singapore 629977 Tel: +65 - 6266 6802 Email: info.sg@leviat.com

Spain Leviat Polígono Industrial Santa Ana c/ Ignacio Zuloaga, 20 28522 Rivas-Vaciamadrid Tel: +34 - 91 632 18 40 Email: info.es@leviat.com

Sweden

Leviat Vädursgatan 5 412 50 Göteborg Tel: +46 - 31 - 98 58 00 Email: info.se@leviat.com

Switzerland Leviat Grenzstrasse 24 3250 Lyss Tel: +41 - 31 750 3030 Email: info.ch@leviat.com

United Kingdom Leviat President Way, President Park, Sheffield, S4 7UR Tel: +44 - 114 275 5224 Email: info.uk@leviat.com

United States of America Leviat 6467 S Falkenburg Rd. Riverview, FL 33578 Tel: (800) 423-9140 Email: info.us@leviat.us

For countries not listed Email: info@leviat.com

Notes regarding this catalogue

Leviat.com

© Protected by copyright. The construction applications and details provided in this publication are indicative only. In every case, project working details should be entrusted to appropriately qualified and experienced persons. Whilst every care has been exercised in the preparation of this publication to ensure that any advice, recommendations or information is accurate, no liability or responsibility of any kind is accepted by Leviat for inaccuracies or printing errors. Technical and design changes are reserved. With a policy of continuous product development, Leviat reserves the right to modify product design and specification at any time.

For more information on the following products, please contact:

Masonry, Structural and Precast Concrete products: +64 (0) 3 376 5205 info.ancon.nz@leviat.com Ancon.co.nz

Remedial Masonry products: +64 (0) 3 376 5205 info.helifix.nz@leviat.com Helifix.co.nz

General Enquiries

+64 (0) 3 376 5205 Leviat.com

Sales Offices and Production

North Island: 246D James Fletcher Drive Otahuhu Auckland 2024 New Zealand South Island: 2/19 Nuttall Drive Hillsborough Christchurch 8022 New Zealand

Leviat.com

Imagine. Model. Make.

Leviat.com